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FOREWORD

This users’ manual and the software it describes have been prepared by Barron
Associates, Inc. to provide a tool for computer-based modeling of complex
processes.  The GNOSIS tool is an outgrowth of 33 years of continuous R&D in
batch-supervised, inductive, numerical modeling employing an algebraic neural
network approach.  The modeling is accomplished with users' databases of
observations;  from these GNOSIS learns the parameter values and
(optionally) structures of network models.  These models have just-sufficient
complexity, considering the functional relationships implicit in the data and
the number of data points.

The authors gratefully acknowledge the important contributions provided by
their present and former colleagues toward developing the underlying theory
and the software for GNOSIS.  Dr. Andrew R. Barron established the
fundamental algorithmic techniques and modeling criteria embodied in the
GNOSIS algorithm, drawing partly on the work of A.G. Ivakhnenko, H.
Akaike, J.H. Friedman, and the ideas of colleagues at Adaptronics, Inc. and
Barron Associates, Inc. (BAI).  GNOSIS builds upon previous BAI software
tools, including ASPN II, ASPN-IIc, CLASS, and Dyn3.  

Support for portions of this work by government and industry sources has been
greatly appreciated.  In particular, support of the Flight Dynamics
Directorate, Wright Aeronautical Laboratory (AFSC), United States Air Force,
is gratefully acknowledged.  This support has been received principally v ia
Small Business Innovative Research Contracts.

All opinions expressed in this manual (and in the software) are those of Barron
Associates, Inc., which is solely responsible for its content.

Barron Associates, Inc. welcomes questions and suggestions concerning GNOSIS,
this manual, and our technical services.
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RESTRICTED RIGHTS
LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions
as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013.

Information in this document is subject to change without notice and does not
represent a commitment on the part of Barron Associates, Inc.  No part of this
manual may be reproduced or transmitted in any form for any purpose without
the express written permission of Barron Associates, Inc.

Product names printed in this manual are the trademarks or registered
trademarks of their manufacturers. UNIX is a registered trademark of AT&T
Bell Laboratories, Macintosh is a registered trademark of Apple Computer,
Inc., SUN is a trademark of Sun Microsystems, Inc.,  and Windows is a
trademark of Microsoft.

©  Copyright 1998 by Barron Associates, Inc.  All rights reserved.
Barron Associates, Inc.
Jordan Building
1160 Pepsi Place, Suite 300
Charlottesville, VA  22901-0807
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GNOSIS SOFTWARE
LICENSE AGREEMENT

1.  GRANT OF LIMITED-USE LICENSE.   Barron Associates, Inc. (BAI) hereby grants                                              
                                                                                                             (Licensee) and Licensee hereby accepts a perpetual,
nontransferable, nonexclusive license to use the GNOSIS software program(s) identified in Attachment 1 (hereinbelow
referred to as "Licensed GNOSIS Program(s)") in strict compliance with the terms of this Agreement.�  Licensee agrees
that the Licensed GNOSIS Program(s) will be used only for the Licensee's internal research and development purposes
and only on the Designated Computer and at the Designated Site stated in Attachment 1.  Licensee may move the
Licensed GNOSIS Program(s) to a new equivalent Designated Computer or to a new Designated Site with BAI's prior
written consent, which consent shall not be unreasonably withheld.  Without BAI's prior written consent, Licensee
shall have neither the power nor the right to sell, assign, license, pledge, or otherwise transfer, whether voluntarily or
by operation of law, any of its rights under this Agreement or in and to the Licensed GNOSIS Program(s), and any such
attempt shall be void and of no effect.

2.  PAYMENT AND DELIVERY.  Customer shall pay to BAI in United States dollars the one-time License Fee(s)
set forth on Attachment 1.  Payment terms are Net 30 days.  Delivery is F.O.B., Charlottesville, Virginia, prepay and
bill.  Interest at the maximum rates permitted by law shall be added by BAI to any overdue amounts owed to BAI by
Licensee.  Licensee shall pay all shipping and insurance charges for delivery of the Licensed GNOSIS Program(s) to the
Designated Site.  Unless BAI receives specific shipping instructions from Licensee, BAI shall select the method of
shipment.  Estimated delivery dates are approximate only and are based upon prompt receipt of the necessary
information and documentation from Licensee.  BAI shall not be liable for any delay in delivery due to causes beyond
its reasonable control.  All amounts payable to BAI under this Agreement are payable in full without deduction for any
custom duties or foreign or U.S. Federal, state, or local excise, sales, use or other taxes.  Licensee agrees to pay
promptly to BAI the amount of all taxes (including without limitation, sales, use, privilege, ad valorem, personal
property, withholding, or excise taxes, and customs duties, however designated) which arise as a result of the
transactions contemplated hereunder, but exclusive of federal, state, or local income taxes based on BAI's net income.

3.  LICENSEE'S AGREEMENT AS TO CERTAIN RESPONSIBILITIES AND USE.  Licensee agrees not
to: (1) distribute, rent, lease, lend, or sublicense, or otherwise transfer the Licensed GNOSIS Program(s) or Licensee's
rights hereunder; (2) remove or obscure proprietary rights (e.g., trademark and copyright) notices; (3) alter, reverse-
engineer, decompile, disassemble, make any attempt to discover the source code of, or create derivative works based on
the software; (4) utilize the software on any service bureau, time-sharing, or interactive cable system; or (5) make
telecommunication data transmission of the software.  Licensee shall be permitted to make one copy of the software
received from BAI, such copy to be used for back-up purposes only.  LICENSEE AGREES TO USE DUE CARE AND TO
TAKE ALL REASONABLE STEPS TO PROTECT THE LICENSED GNOSIS PROGRAM(S) FROM UNAUTHORIZED
REPRODUCTION, PUBLICATION, DISCLOSURE, OR DISTRIBUTION, AND TO ADVISE BAI PROMPTLY IN WRITING
NOT LATER THAN TEN (10) CALENDAR DAYS FROM ITS LEARNING OF OR BECOMING AWARE OF THE
OCCURRENCE OF ANY OF THE ABOVE EVENTS.

4.  COPYRIGHT AND TRADE SECRETS.  The Licensed GNOSIS Program(s) contain trade secrets owned by
BAI, involves or involve the proprietary rights of BAI, and is or are protected by U.S. copyright law and by the laws of
most other countries.  This Agreement does not constitute a sale of, nor does it otherwise convey ownership of the
Licensed GNOSIS Program(s) to Licensee or any other party.  The Licensed GNOSIS Program(s), its or their structure,
and its or their code are valuable property of BAI.  BAI retains title to and full ownership thereof and all other
proprietary rights related thereto, including, without limitation, copyright and trademark rights.

5.  TERM.  Without limitation to any of its other rights, BAI may terminate this Agreement if Licensee fails to
comply with any of the terms and conditions of this Agreement.  Upon termination of this Agreement, Licensee shall
purge all electronic memories of the Licensed GNOSIS Program(s).  Licensee's obligations under this Agreement shall
survive any termination of this Agreement.

6.  UPDATES.  If Attachment 1 indicates that Licensee has purchased GNOSIS Hotline Support and Software
Maintenance, then, during the indicated period thereof, BAI will furnish Licensee a copy of any Update(s) of the
Licensed GNOSIS Program(s).  As used herein, the term "Update" shall mean any general version or release of a
Licensed GNOSIS Program that contains an addition, improvement, enhancement, or other change thereto which is not
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separately identified and priced by BAI in its published price schedule and which is marketed by BAI under the same
name as that of the Licensed GNOSIS Program in question.  At the sole discretion of BAI, BAI will furnish new
programs that are intended for use in conjunction with the Licensed GNOSIS Program(s).  Upon delivery to Licensee,
by whatever means of delivery, any GNOSIS related Updates and New Programs become immediately subject to all
terms and conditions of this license agreement.  Licensee may renew the GNOSIS Hotline Support and Software
Maintenance for successive annual periods by paying the annual license fee in effect at each time of renewal.

7.  LIMITED WARRANTY AND LIMITATION OF LIABILITY.   BAI warrants the magnetic diskette or tape
on which the software is recorded to be free from defects in material and workmanship for a period of ninety (90) days
from the date of delivery as evidenced by a copy of the receipt.  If during this period a defect in the tape or diskette
should occur, Licensee may return the same to BAI and it will be replaced without charge.  Nothing in this Limited
Warranty shall obligate BAI to make Updates available to its customers generally or to Licensee in particular.  

BAI warrants that for a period of ninety (90) days from the date of delivery of the Licensed GNOSIS Program(s) to
Licensee, said program(s) will, if properly installed on the Designated Computer, perform in conformance with the
applicable User Documentation; provided, however, that BAI's sole obligation and liability for any breach of the
Warranty shall be, in BAI's sole option, to: (i) replace the copy of such defective Licensed Program, (ii) repair or
correct the copy of such defective Licensed Program and its User Documentation so that it or they function or read in
accordance with such specifications, or (iii) refund a mutually-agreed portion not to exceed seventy-five percent (75%)
of the License Fee paid for each defective Licensed Program.  

IN NO EVENT SHALL BAI's LIABILITY TO LICENSEE EXCEED THE AMOUNT PAID BY LICENSEE TO BAI
HEREUNDER.  ANY WARRANTY MADE BY BAI HEREUNDER SHALL BE VOID IN THE EVENT THAT LICENSEE
MODIFIES THE LICENSED GNOSIS PROGRAM(S), OR USES OR OPERATES THEM ON A COMPUTER OTHER THAN
THE DESIGNATED COMPUTER OR AT A LOCATION OTHER THAN THE DESIGNATED SITE.  EXCEPT AS EXPRESSLY
SET FORTH ABOVE, (1) THE SOFTWARE AND ITS ASSOCIATED DOCUMENTATION ARE PROVIDED "AS IS"
WITHOUT WARRANTY OF ANY KIND BY BAI INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE; AND (2) BAI DOES NOT WARRANT THAT THE
SOFTWARE AND ITS ASSOCIATED DOCUMENTATION WILL MEET LICENSEE'S REQUIREMENTS, BE ERROR FREE,
OR OPERATE WITHOUT INTERRUPTION, AND THE LICENSEE ASSUMES THE ENTIRE RISK AS TO ITS QUALITY
AND PERFORMANCE.  IN NO EVENT WILL BAI BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTION, LOSS OF BUSINESS INFORMATION OR OTHER PECUNIARY LOSS) EVEN IF BAI HAS BEEN
ADVISED OF THE POSSIBILITY THAT SUCH DAMAGES MAY ARISE.  WITHOUT LIMITATION TO THE FOREGOING,
BAI SHALL HAVE NO LIABILITY WHATSOEVER, WHETHER IN AN ACTION BASED ON CONTRACT OR TORT,
ARISING OUT OF OR IN CONNECTION WITH THE PERFORMANCE OR NON-PERFORMANCE OF ANY COMPUTER
PROGRAM WHICH RESULTS IN WHOLE OR IN PART FROM THE USE BY THE LICENSEE OF THE LICENSED GNOSIS
SOFTWARE.

8.  OTHER TERMS AND CONDITIONS.   No remedy specified in this Agreement is intended to be exclusive, and
the rights and remedies specified herein are in addition to any others conferred on BAI by law or in equity.  Licensee
agrees that should it default in any of the covenants or agreements herein, Licensee shall pay all costs and expenses,
including reasonable attorney's fees, which may arise from BAI's enforcement of this Agreement against Licensee.  If
any provision of this Agreement shall be held by a court of competent jurisdiction to be contrary to law, the remaining
provisions of the Agreement shall remain in full force and effect.  This Agreement is governed by the laws of the
Commonwealth of Virginia, U.S.A.  This Agreement, together with Attachment 1 checked and initialed by both
parties, constitutes the entire, complete, and exclusive statement of the agreement between the parties with respect to
the Licensed GNOSIS Program(s) and User Documentation, and supersedes all prior proposals, understandings, or
agreements, written or oral with respect thereto.  Although the terms and conditions of this Agreement may conflict
with or vary from certain terms and conditions, if any, specified by Licensee's order form, BAI's acceptance of
Licensee's order and of this Agreement is made expressly on the condition that this Agreement shall govern.

For:                                                                                        For:      Barron         Associates,       Inc.                                           

By:                                                                                        By:                                                                                      

Name:                                                                                        Name:      Roger        L.         Barron                                                          

Title:                                                                                        Title:     President                                                                      
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Date:                                                                                        Date:                                                                                     

GNOSIS Software License Agreement

Attachment 1

Re Agreement between                                                                                                                                                            (Licensee)

and Barron Associates, Inc. (BAI), dated                                                             :

Designated Computer:

(1) Type/Model                                                                                                                                      

(2) Serial No.                                                                                                                                      

(3) Operating System/Level                                                                                                              

(4) Distribution Medium                                                                                                               

Designated Site:                                                                                                                                                                               

                                                                                                                                                                              

Licensed GNOSIS
Program

License Fee User Documentation Estimated Delivery
Date

_______________ _______________ _______________ _______________

_______________ _______________ _______________ _______________

_______________ _______________ _______________ _______________

_______________ _______________ _______________ _______________

_______________ _______________ _______________ _______________

Initialled for Licensee by:                               

Initialled for BAI by:                               
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INTRODUCTION

Many scientific, engineering, marketing, and economic phenomena are complex and difficult to
model. This usually is owing to a large number of conditions that influence the variable or
variables to be modeled or an incomplete understanding of the underlying principles governing
the system.  The Barron Associates, Inc. Generalized Networks for the Optimal Synthesis of
Information Systems (GNOSIS) software suite provides a versatile and powerful method for
modeling a variety of complex phenomena.  GNOSIS can solve diversified problems such as:

• modeling systems with continuous-valued outputs (e.g.,  what is the temperature inside
a reactor?),

• classifying data into two or more categories (e.g.,  will the market go up, down, or stay
the same?)

• predicting the future values of time-series data (e.g.,  what will tomorrow's
temperature be?)

GNOSIS offers a number of technical advantages over both traditional statistical modeling
and other neural network software tools.  These include:

• building blocks that can, on their own, model complex nonlinear  data
interrelationships,

• a network training algorithm that is orders of magnitude faster than the gradient-
descent methods employed by most neural network algorithms, and

• a 'C'-language code generator that allows the user to compile and incorporate networks
in custom applications on any computer.  

Additionally, with the optional Algorithm for Synthesis of Polynomial Networks – III
(ASPN-III) structure-learning feature, GNOSIS can rapidly sort through thousands of
candidate inputs and structures to find a feedforward estimation network of just-sufficient
complexity that is designed to perform optimally on unseen data.  The structure-learning
capability can significantly reduce the time required to obtain a good model, while enhancing
model robustness; the details of this option are discussed in Chapter 6 of this manual.
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BACKGROUND

An artificial neural network (ANN) synthesis algorithm is a mathematical technique for
learning relationships between a set of observed data (inputs) and corresponding dependent
data (outputs).  In statistics, the construction of such models is called regression, but unlike
traditional regression, ANNs model complex systems by combining numerous, relatively simple,
elements (or neurons).  This structure, as the name implies, was originally suggested by the
physiology of the human brain and has been particularly well-suited for the modeling of
numerous complex, nonlinear systems.

Common neural network techniques use nodal elements (or neurons) that combine their inputs
linearly and pass the result through a nonlinear transformation (e.g., sigmoid or radial basis
function).  In multi-layer networks, elements are grouped in layers, and the inputs to each
element on any given layer are the outputs of the previous layer.  Figure 1.1 shows a two-layer
fully-connected feedforward neural network.

  

...

...
.
.
.

Input Layer 1st Hidden Layer 2nd Hidden Layer Output Layer

 Figure 1.1: A Two-Layer Feedforward Neural Network

GNOSIS creates its models by analyzing user-provided data (called the synthesis or training
database) and finds the best mathematical relationship between measurable input variables
and an output variable or variables.  The user must, therefore, create a database  for GNOSIS
by:

1. Deciding which variables are to be estimated or classified (the output variables).
2. Deciding which of the measurable input variables (the candidate input variables)

potentially influence the output variables.
3. Measuring the candidate input variables and compiling this information with

corresponding "truth" measurements (or calculations) of the output variables.

The goal of GNOSIS is to generate models of data that are  accurate, simple, robust,
transparent, and easy to implement.  Accurate models closely reflect the relationships between
measured inputs and their respective output or outputs. Simple models require only a few
mathematical manipulations of the inputs to calculate the outputs.  Robust models have
behavior that is well-defined, and these models act reliably for specified conditions; they are
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also insensitive to moderate uncertainties in the data and perform well on data that the model
has not seen during synthesis. Transparent models, by the clarity of their form, lead the
analyst to further insights into the process being modeled. The final attribute of good models,
ease of implementation, becomes essential if the models are to be used in time-critical
applications.

STRUCTURE LEARNING

If you purchased the ASPN-III structure learning feature, GNOSIS can be used to find the best
feedforward (no time delays or feedback) model that transforms observable variables into one
or more estimated dependent variables.  The software begins by postulating the simplist
possible model (a linear relationship between a selected one of the input variables and the
output variable).  GNOSIS then introduces incremental complexity increases to the model until
a just-sufficient level of complexity is reached.  "Just sufficient" complexity means that a
complexity-constrained modeling criterion (predicted squared error) has been minimized,
signifying that, for the given training database, any further growth in model complexity would
lead to deterioration - not improvement - in the ability of the model to generalize from its
training.  In other words, when constructing a network via ASPN-III, GNOSIS uses information
theory to find a  balance between model accuracy and simplicity.  A proper balance ensures the
best model performance when the model is later interrogated on "unseen" data, i.e., data not
available during model synthesis.  A condition of overfitting occurs if the model is allowed to
become more complex than justified by the quantity of synthesis data; overfitting leads to loss
of performance on unseen data (see Figures 1.2 and 1.3).  

To reduce the risk of overfitting, the structure learning algorithm used by GNOSIS employs the
predicted squared error (PSE) criterion to determine the relative worth of each trial element.
Elements with a high degree of complexity are penalized and are therefore less likely to
appear in the final model.  This "complexity penalty" is a function of the number of parameters
in the network, the number of observations in the database, and a measure of the information
content in the synthesis database.  As a result, the larger and more diverse the database in
relation to the number of model parameters, the more complex and therefore more accurate the
GNOSIS model can justifiably be.
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GETTING STARTED

HARDWARE AND SOFTWARE REQUIREMENTS

GNOSIS is currently supported in three environments: UNIX (primarily SUN Operating
System and Hewlett-Packard workstations), Macintosh computers (with 68030, 68040, or
PowerPC microprocessors), and DOS machines (486 or Pentium microprocessors and Windows
95/NT ).†  The software functions identically in each of these environments.  

INSTALLING THE PROGRAM

GNOSIS and its associated control and test files are not compressed and do not require any
special installation software to transform them into a usable form.  To install GNOSIS on your
computer, simply copy the contents of the distribution disk or tape to a hard drive on your
computer.

QUICK START TUTORIAL

A quick start tutorial session will help you become familiar with the general process of model
creation using GNOSIS.  Further details are given in the remainder of this manual.  The
synthesis process consists of three main parts:

• database creation and manipulation
• model synthesis (training)
• model evaluation

Because GNOSIS can be used to solve many different types of modeling problems, the following
three examples are provided in the next sections.  The first tutorial contains the most detail,
and succeeding examples refer to it on occasion.

                                                
† GNOSIS is written in ANSI C and uses a command-line interface.  As a result, it can be ported to a number of
different platforms relatively easily.  If you do not have one of the platforms listed above, contact Barron
Associates, Inc., to inquire about the possibility of porting the software to your specific computer and
operating system.
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• Tutorial 1: estimation problem using a General Structure File (GSF)
• Tutorial 2: estimation problem using a Network Description File (NDF)
• Tutorial 3: classification problem using a General Structure File

Executing the various commands required in these examples may be different depending on the
platform.  For example, on DOS or UNIX platforms, type the command lines shown in the
tutorials.  On a Macintosh, double click on the GNOSIS icon, which creates a dialog box for
entering command lines.

For all the tutorials, run GNOSIS in the same directory with the tutorials files.  Either copy
the desired tutorial files to the GNOSIS directory, or copy the GNOSIS executable and license
files into the GNOSIS\TUTORIALS directory.   All input files mentioned in the quick start
tutorial session can be found in GNOSIS\TUTORIALS.

TUTORIAL  1: ESTIMATION PROBLEM USING A GENERAL STRUCTURE FILE

GNOSIS uses three types of control files (GSF, NDF, and SLF) to synthesize neural network
models.  These files contain the parameters and options used in training and evaluating a
model, and can be modified to achieve better performance from the neural network.

Database Creation and Manipulation
To become familiar with use of a General Structure File (GSF), the first step is to create a
database that implicitly describes the problem to be solved.  The time-series dynamic
estimation problem of this first tutorial session consists of optimizing the parameters of a two-
input, two-output neural network.  The data to be used for training and evaluation of this neural
network are stored in the file, feedback.dat , which is shown in Figure 2.1.

GNOSIS keeps track of data columns using the labels in the header line of the database.  The
first column stores the observation index, n, which is not used by GNOSIS, but can remain in the
database for the user's convenience.

n x1 x2 y1 y2
0 0.000000 0.000000 -0.000064 0.000860
1 0.500000 0.500000 1.624742 0.501206
2 1.000000 1.000000 3.001583 0.501587
3 1.500000 1.500000 4.126927 0.009568
4 2.000000 2.000000 5.000255 -1.000652
. . . . .
. . . . .
. . . . .
245 2.500000 -3.500000 21.125971 10.108940
246 2.000000 -3.000000 17.498762 10.737074
247 1.500000 -2.500000 12.123316 7.464598
248 1.000000 -2.000000 7.500667 4.466553
249 0.500000 -1.500000 3.624975 2.180159

Figure 2.1: Database File, feedback.dat

To use some of the data for synthesis (training) and some for later evaluation, split the
database into two subsets and create files accordingly.   When determining the database
splitting ratio (percentage of observations that will be in each data subset), consider that:
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1. The training subset should have as many observations as possible to obtain an accurate
model (generally around 80% of the observations.)

2. The evaluation subset should contain enough observations to provide a statistically
sound evaluation.

This network (i.e., model) will have internal feedback and time delays, and the database is
split such that the network will be trained on the first 80% to help it identify the time
dependencies.  The first 200 observations are in feedback.tra  while the last 50 observations
are in feedback.eva .   For problems that don't involve time-series data, avoid splitting a
database such that the first part is used for training and the last part for evaluation.
However, for this example, the inputs are in the same domain (same population) during both
the first and last parts of the database.

Network Synthesis (Training)

For this tutorial problem, the database has been created using the following nonlinear auto-
regressive moving-average equations (NARMAX)

y1[n] = 3 x1[n] – x1[n] x2[n–1] + 0.5 x2 
2[n] + ε[n]

and

y2[n] = x1[n] – x1[n-1] x2[n] + 0.01 x2[n–1] y2 
2[n–1] + ε[n]

in which "n" is the observation number and ε[n] represents noise.  

Normally one would not know the neural network structure and parameters, but for now it is
helpful in gaining understanding of GNOSIS.

The single hidden layer for the polynomial neural network that can model these equations is
shown in Figure 2.2.  The small boxes embedded in the inside left of the node boxes represent the
number of samples to delay the respective inputs.

x1[n]

x2[n]

0
1

0
1

1

0

0
1

y1[n]

y2[n]

Neural
Network
Node 0

Neural
Network
Node 1

Figure 2.2: Network Structure for Estimation Problem
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Training in this case is the process of optimizing the parameters of the given model structure so
as to identify the relationship between the database input variables and the output variables.

In its modeling, GNOSIS builds a network of polynomial equations.  This construction can be
controlled in more than one way.  In this example, a GSF is used to specify the network to be
built.  The GSF instructs GNOSIS to build a network containing one hidden layer with the same
number of elements as there are outputs in the training database.  Each element has as inputs
all the training database inputs as well as the delayed inputs and/or feedbacks specified in
the GSF.  Details on the specific fields in the GSF are explained in Chapter 4.

The GSF for this problem is found in the file feedback.gsf  and is shown in Figure 2.3.

General Structure File for GNOSIS.
Copyright 1998 by Barron Associates, Inc. All Rights Reserved.

----------------------------------------------------------------------------------------
MODIFIER ARGUMENTS |COMMENTS
----------------------------------------------------------------------------------------
Inputs USE_VSTRING |USE_VSTRING, or enter input variables by name,

|ending with'|'
Outputs USE_VSTRING |USE_VSTRING, or enter output variables by name,

|ending with'|'
Vstring -xxyy |Specify inputs/outputs: y, x, -, integer

|repeat count (only used if USE_VSTRING
|option entered for Inputs or Outputs)

Distortion_Function QUADRATIC |Indicate distortion (loss) function for
|GNOSIS to use (QUADRATIC/LOGISTIC)

Normalize NO |Normalize inputs (YES/NO)
Unitize NO |Normalize/Unitize outputs (YES/NO)

|(only used if Distortion is QUADRATIC)
Init_Network_With_Database YES |Use database data to fill shift registers

|with "true" data before optimizing (YES/NO)
----------------------------------------------------------------------------------------
Input_Delays CUSTOM |Format for input delays (LINEAR/LOG/CUSTOM)

|LINEAR: delay[i] = previous_delay + Space_Delay
|LOG: delay[i] = Start_Delay + 2^i - 1
|CUSTOM: enter delays in In_Custom_Delays

Start_Delay 0 |Smallest delay used in each node >= 0
Space_Delay 3 |Spacing between delays >= 1
Max_Delay 15 |Maximum delay for each node > Start_Delay
Custom_Delays 0 1 |Delay values >= 0 separated by spaces or tabs
----------------------------------------------------------------------------------------
Use_Prior_Data_Base_Outputs YES |Use past values of DATABASE output columns

|as network inputs (YES/NO)
Use_Prior_Node_Outputs NO |Use past values of NODE output(s) as inputs

|to node - i.e. feedback (YES/NO)
Output_Delays CUSTOM |Format for output delays (LINEAR/LOG/CUSTOM)

|LINEAR: delay[i] = previous_delay + spacing
|LOG: delay[i] = start + 2^i - 1
|CUSTOM: enter delays in In_Custom_Delays

Start_Delay 1 |Smallest delay used in each node >= 1
Space_Delay 3 |Spacing between delays >= 1
Max_Delay 16 |Maximum delay for each node > Start_Delay
Custom_Delays 1 |Delay values >= 1 separated by spaces or tabs
----------------------------------------------------------------------------------------
Limit_Nodes IO |Set which nodes to limit.  Nodes from input

|and output layers limited with database
|training values.  (IO/ALL/NONE)

Limit_Range 1.0 |Percentage of full range (0.01 - 1.0) that
|node outputs  will be limited to. (only used
|if Limit_Nodes is ALL)

----------------------------------------------------------------------------------------
Node_Type COMP |Specify polynomial structure type

|(ADD/MULT/COMP/CUSTOM) ADD = additive,
|MULT = multilinear, COMP = complete

Node_Degree 2 |Maximum allowable degree of polynomial term
Node_Bias NO |Include bias term in polynomial (YES/NO)
Custom_K_Matrix_File ?.kmx |File name of custom K matrix
Post_Trans LIN |Choose post transformation (LIN/SIN/COS/SIG)
----------------------------------------------------------------------------------------
Write_Pix_File YES |Write node connections diagram and node

|equations to .pix file
Write_Source_Code YES |Write source code to .c and .h files
----------------------------------------------------------------------------------------

Figure 2.3: General Structure File, feedback.gsf ,  for Tutorial 1
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GNOSIS uses a command-line interface to allow the user to choose execution modes.  Chapter 4,
"Using GNOSIS," describes the available command-line options in detail.  To execute GNOSIS
in training mode, enter the following command

gnosis -d feedback.tra -t feedback.gsf -b feedback

***************************************************
# GNOSIS Version 3.0
# Copy #0001 licensed to Barron Associates, Inc.

# Copyright 1995-1998, Barron Associates, Inc.
# All rights reserved
# GNOSIS
      Optimizes network structure and/or optimizes
      parameters of neural networks.
***************************************************
# Cmdline: gnosis -d feedback.tra -t feedback.gsf -b feedback
# GNOSIS: Sizing input database 'feedback.tra'...
# Database: 5 variables, 200 observations, 1 block(s)
# GNOSIS: Scanning general structure file 'feedback.gsf'...
# GNOSIS: Initializing the network structure...
# GNOSIS: Network input variable(s): x1 x2 y1 y2
# GNOSIS: Network output variable(s): y1 y2
# GNOSIS: Reading input database...
# GNOSIS: Optimizing the parameters for y1...
# ILS: Iteration  0, Lambda 0.0e+00, rScore 1.08483
# ILS: Iteration  1, Lambda 0.0e+00, rScore 0.00804415
# ILS: Iteration  2, Lambda 0.0e+00, rScore 0.00804415
# ILS: Iteration  3, Lambda 1.0e-01, rScore 0.00804415
# ILS: Parameter change below tolerance.
# GNOSIS: Optimizing the parameters for y2...
# ILS: Iteration  0, Lambda 0.0e+00, rScore 1.00459
# ILS: Iteration  1, Lambda 0.0e+00, rScore 0.0145046
# ILS: Iteration  2, Lambda 1.0e-01, rScore 0.0145046
# ILS: Iteration  3, Lambda 1.0e-02, rScore 0.0145046
# ILS: Parameter change below tolerance.
# GNOSIS: Evaluating the network...
# GNOSIS: Writing estimation file 'feedback.est'...
# GNOSIS: Writing statistics file 'feedback.sts'...
# GNOSIS: RMS Error: y1 = 0.00103293  y2 = 0.0459645
# GNOSIS: Norm RMS Error: y1 = 0.000183732  y2 = 0.0133094
# GNOSIS: R Squared: y1 = 1  y2 = 0.999823
# GNOSIS: Writing network description file 'feedback.mdl'...
# GNOSIS: Writing graphic representation of network to 'feedback.pix'...
# GNOSIS: Writing source code to 'feedback.c'...
# GNOSIS: Writing header code to 'feedback.h'...
# GNOSIS: DONE @3.90 sec

Figure 2.4: Display of Training Run for Tutorial 1

As indicated on the screen, GNOSIS generates a number of files when network synthesis is
complete.  The files are named using the specified base with the appropriate extension
appended:

• feedback.mdl model file:  model structure, and parameters for future GNOSIS
use; same format as Network Description File

• feedback.pix structure file:  model training score, structure, and parameters in a
semi-graphical form

• feedback.c source code file: C source code for model implementation
• feedback.h source code file: C header file with sample main program
• feedback.est estimation file:  true and modeled output from training database
• feedback.sts statistics file:  model performance metrics on training database

To verify that everything worked correctly, look in the structure file, feedback.pix .  For the
first equation, the significant parameters obtained by GNOSIS on the training data for Node5
will be close to those originally defined in the representative equations: 3, –1, and 0.5;  a l l
other terms should have coefficients that are nearly zero.  For the second equation the
coefficients will not match the equations exactly  because feedback.gsf  limited GNOSIS to
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second-order interactions of inputs, and x2[n–1] y2 
2[n–1] is a third-order term.  However,

GNOSIS still performs well on this problem.  Tutorial 2 will show how to customize these
networks to get rid of unnecessary terms and include new terms.

Model Evaluation

GNOSIS automatically produces an estimation file as part of the training process.  However,
this file initially contains outputs that were estimated using data in the training dataset.
GNOSIS should be rerun to get results on independent (unseen) data.

To evaluate the GNOSIS model stored in feedback.mdl , enter the command

gnosis -d feedback.eva -e feedback.mdl -b feedback_eval

The generated display appears in Figure 2.5, and results are saved in two files:

• feedback_eval.est estimation file:  true and modeled output from evaluation
database

• feedback_eval.sts statistics file: model performance metrics on evaluation
database

***************************************************
# GNOSIS Version 3.0
# Copy #0001 licensed to Barron Associates, Inc.

# Copyright 1995-1998, Barron Associates, Inc.
# All rights reserved
# GNOSIS
      Optimizes network structure and/or optimizes
      parameters of neural networks.
***************************************************
# Cmdline: gnosis -d feedback.eva -e feedback.mdl -b feedback_eval
# GNOSIS: Sizing input database 'feedback.eva'...
# Database: 5 variables, 50 observations, 1 block(s)
# GNOSIS: Scanning input network description file 'feedback.mdl'...
# GNOSIS: Initializing the network structure...
# GNOSIS: Network input variable(s): x1 x2 y1 y2
# GNOSIS: Network output variable(s): y1 y2
# GNOSIS: Reading input database...
# GNOSIS: Evaluating the network...
# GNOSIS: Writing estimation file 'feedback_eval.est'...
# GNOSIS: Writing statistics file 'feedback_eval.sts'...
# GNOSIS: RMS Error: y1 = 0.00123978  y2 = 0.0495621
# GNOSIS: Norm RMS Error: y1 = 0.000213843  y2 = 0.0124968
# GNOSIS: R Squared: y1 = 1  y2 = 0.999845
# GNOSIS: DONE @0.37 sec

Figure 2.5: Display of Evaluation Run for Tutorial 1

If many network models are tested for a given problem, compare all the evaluation statistics
files to determine the best model. The best model should not exhibit a significant difference
between the model performance on its training data and the evaluation data.

TUTORIAL  2: ESTIMATION PROBLEM USING A NETWORK  DESCRIPTION FILE

The second tutorial session uses the same database as the first, but a Network Description File
(NDF) is used during network synthesis rather than a General Structure File (GSF).  Thus, the
database creation and manipulation, network evaluation, and network implementation stages
of model development are the same as in Tutorial 1.
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Network Synthesis (Training)

The Network Description File or NDF provides an alternative means of describing the network
structure for GNOSIS to optimize.  Whereas the General Structure File may be somewhat
simpler and easier to work with, the NDF is much more flexible.  The Network Description
File (NDF) for this tutorial, feedback.ndf , appears in Figure 2.6.  The specific fields in the
NDF are explained in detail in Chapter 4.  The network structure represents the equations given
for the problem in Tutorial 1, except that the noise is not modeled.

GNOSIS NETWORK DESCRIPTION
Inputs: x1 x2 |
Outputs: y1 y2 |
Class_Single_Output: NO
Number_of_Layers: 3
Distortion_Function: QUADRATIC
Normalize: NO
Unitize: NO
Limit_Nodes  NONE
Init_Network_With_Database: NO

NETWORK STRUCTURE
----------------------------------------------
INPUT_LAYER:

NODE_0-0 DESCRIPTION:
Parameters: 0 1
Output_Range: 0 0

NODE_0-1 DESCRIPTION:
Parameters: 0 1
Output_Range: 0 0

----------------------------------------------
LAYER 1:

Number_of_Nodes: 2
Core_Transformation: POLY
Post_Transformation: LIN
NODE_1-0 DESCRIPTION:

Input_Node(s): 2
NODE 0 - 0

Delays: 0
NODE 0 - 1

Delays: 0 1
Parameters:

0.1 -0.1 0.1
Set_of_Indices:

1 0 0
1 0 1
0 2 0

Optimize: YES
Output_Range: 0 0

NODE_1-1 DESCRIPTION:
Input_Node(s): 3

NODE 0 - 0
Delays: 0 1

NODE 0 - 1
Delays: 0 1

NODE 1 - 1
Delays: 1

Parameters:
0.1 -0.1 0.1

Set_of_Indices:
1 0 0 0 0
0 1 1 0 0
0 0 0 1 2

Optimize: YES
Output_Range: 0 0

----------------------------------------------
OUTPUT_LAYER:

NODE_2-0 DESCRIPTION:
Input_Node: 1 - 0
Parameters: 0 1
Output_Range: 0 0

NODE_2-1 DESCRIPTION:
Input_Node: 1 - 1
Parameters: 0 1
Output_Range: 0 0

Figure 2.6: Network Description File, feedback.ndf , for Tutorial 2

To execute GNOSIS in the training mode using the NDF, enter the following command:

gnosis -d feedback.tra -t feedback.ndf -b feedback
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To evaluate the model, follow the steps outlined in Tutorial 1.

TUTORIAL 3:   CLASSIFICATION PROBLEM USING A GENERAL STRUCTURE FILE

The third tutorial describes how to use GNOSIS to classify species of the iris flower using a
well-known database.

Database Creation and Manipulation

In Fisher's iris database [Fisher, 1936], there are three classes (or species) of iris, with 50
observations recorded for each class. Sample data contained in iris.dat  are shown in Figure
2.7.   Note that each class (or species) is entered as a character string.  GNOSIS considers each
unique string to be a different class.

Sepal_length   Sepal_width   Petal_length   Petal_width   Class
5.1            3.5           1.4            .02           Species_1
4.9            3             1.4            .02           Species_1
...         ...  ...          ...         ...
7              3.2           4.7            1.4           Species_2
...         ...  ...          ...         ...
7.1            3             5.9            2.1           Species_3
...         ...           ...          ...         ...

Figure 2.7: Fisher's Iris Flower Data

As before, the original iris data should be split into a training database  and an evaluation
database .  Because there are no time-dependencies in the iris data, the data should be split
randomly.  Sample training (iris.tra ) and evaluation (iris.eva ) databases are provided.

Network Synthesis (Training)

Fisher's iris data represent a classification problem.  The optimum network structure for
classification problems has C – 1 output nodes, where C is the number of output classes, and each
output represents the probability of its respective class (1, 2, ... , C – 1).  Note that because
probabilities must sum to unity, the probability of class C, P(C), is determined by P(C) = 1 –
[P(1) + P(2) + ... + P(C–1)].

The GNOSIS neural network structure for this classification problem appears in Figure 2.8.
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Figure 2.8: Network Structure for Iris Classification Problem

Since, for this problem, the network requires only one hidden layer, the General Structure File
(GSF) is a quick and easy way to guide GNOSIS in finding an optimal solution.  The GSF
provided for the iris problem, iris.gsf , is shown in Figure 2.9.  Train the classification
network by entering the following command:

gnosis -d iris.tra -t iris.gsf -b iris

For classification problems, GNOSIS writes the estimation file, iris.est with the true
probability versus the probability based on the network outputs.  GNOSIS also includes
"confusion" matrices in the statistics file, iris.sts , which provide a simple representation of
how well observations were classified.  See Chapter 5 for details.

Model Evaluation

Evaluate the model GNOSIS created, using the evaluation data, by entering on the command
line:

gnosis -d iris.eva -e iris.mdl -b iris_eval

GNOSIS writes the statistics file, iris_eval.sts , and estimation file, iris_eval.est .
Use the statistics file to determine how well GNOSIS performed.  The logistic loss score of the
evaluation run seems poor.  A "good" score is usually close to zero, and scores close to or greater
than one are usually "bad."  However, in this example, GNOSIS actually classified 29 out of 30
observations correctly.  The nature of the logistic-loss function, used for training classification
networks, reduces the utility of using score as a measure of network performance.  Percent correct
classifications is frequently a better measure of network performance.
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General Structure File for GNOSIS.
Copyright 1998 by Barron Associates, Inc. All Rights Reserved.

----------------------------------------------------------------------------------------
MODIFIER ARGUMENTS |COMMENTS
----------------------------------------------------------------------------------------
Inputs USE_VSTRING |USE_VSTRING, or enter input variables by name,

|ending with'|'
Outputs USE_VSTRING |USE_VSTRING, or enter output variables by name,

|ending with'|'
Vstring xxxy |Specify inputs/outputs: y, x, -, integer

|repeat count (only used if USE_VSTRING
|option entered for Inputs or Outputs)

Distortion_Function LOGISTIC |Indicate distortion (loss) function for
|GNOSIS to use (QUADRATIC/LOGISTIC)

Normalize NO |Normalize inputs (YES/NO)
Unitize NO |Normalize/Unitize outputs (YES/NO)

|(only used if Distortion is QUADRATIC)
Init_Network_With_Database NO |Use database data to fill shift registers

|with "true" data before optimizing (YES/NO)
----------------------------------------------------------------------------------------
Input_Delays CUSTOM |Format for input delays (LINEAR/LOG/CUSTOM)
    |LINEAR: delay[i] = previous_delay + Space_Delay
   |LOG: delay[i] = Start_Delay + 2^i - 1
    |CUSTOM: enter delays in In_Custom_Delays
Start_Delay 0 |Smallest delay used in each node >= 0
Space_Delay 3 |Spacing between delays >= 1
Max_Delay 15 |Maximum delay for each node > Start_Delay
Custom_Delays 0 |Delay values >= 0 separated by spaces or tabs
----------------------------------------------------------------------------------------
Use_Prior_Data_Base_Outputs NO |Use past values of DATABASE output columns

|as network inputs (YES/NO)
Use_Prior_Node_Outputs NO |Use past values of NODE output(s) as inputs

|to node - i.e. feedback (YES/NO)
Output_Delays CUSTOM |Format for output delays (LINEAR/LOG/CUSTOM)

|LINEAR: delay[i] = previous_delay + spacing
|LOG: delay[i] = start + 2^i - 1
|CUSTOM: enter delays in In_Custom_Delays

Start_Delay 1 |Smallest delay used in each node >= 1
Space_Delay 3 |Spacing between delays >= 1
Max_Delay 16 |Maximum delay for each node > Start_Delay
Custom_Delays 1 |Delay values >= 1 separated by spaces or tabs
----------------------------------------------------------------------------------------
Limit_Nodes IO |Set which nodes to limit.  Nodes from input

|and output layers limited with database
|training values.  (IO/ALL/NONE)

Limit_Range 1.0 |Percentage of full range (0.01 - 1.0) that
|node outputs  will be limited to. (only used
|if Limit_Nodes is ALL)

----------------------------------------------------------------------------------------
Node_Type COMP |Specify polynomial structure type

|(ADD/MULT/COMP/CUSTOM) ADD = additive,
|MULT = multilinear, COMP = complete

Node_Degree 1 |Maximum allowable degree of polynomial term
Node_Bias YES |Include bias term in polynomial (YES/NO)
Custom_K_Matrix_File ?.kmx |File name of custom K matrix
Post_Trans LIN |Choose post transformation (LIN/SIN/COS/SIG)
----------------------------------------------------------------------------------------
Write_Pix_File YES |Write node connections diagram and node

|equations to .pix file
Write_Source_Code YES |Write source code to .c and .h files
----------------------------------------------------------------------------------------

Figure 2.9: General Structure File, iris.gsf , for Tutorial 3



3
DATA FILE FORMAT
AND PREPARATION

INTRODUCTION

GNOSIS requires a database of input and output data sequences, with optional weights, which
it uses to determine the parameters in and sometimes the structure of a neural network.
GNOSIS is a supervised learning tool, due to its reliance on a "truth" output in the database.  To
manipulate the database of candidate inputs and true outputs,  Barron Associates provides a
proprietary tool, DB, with GNOSIS.  DB is a command-line oriented program with detailed
on-line help; a general description of DB functions is included in this section.

GENERAL DATA FILE FORMAT

GNOSIS uses a specific form of numerical text database, divided into a header and a data
section.  The header is the first line of the database and lists the variable names, optionally
followed by size specifiers.  The variable names label the columns of the database; each is
followed by a tab.  Names may include letters, digits, and underscore, but must start  with a
letter.  The sizes include the number of blocks and the numbers of observations in each block,
each followed by a space:

var1 var2 ... var_last num_blocks num_obs1 num_obs2 … num_obs_last_block

The data section is composed of blocks, observations, and variables.  A  block (typically a time
series) is made up of observations, and each observation consists of a set of tab-delimited
variable values.  Each block may contain a different number of observations; blocks are
separated by a line containing four hyphens.  The number of variables, blocks, and observations
are limited only by available memory.  Once block sizes are determined from either the size
specifiers or by counting the observations between block separators, the separators are ignored.
Therefore, the separators are optional if sizes are specified.  If the separators are misplaced
according to the size specifiers, the block sizes specified prevail.

All variables appear as vertical columns in the database and may include inputs, outputs, and
optional observation weights.  Variable values should be numerical, except for single output
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classification data (see below).  Weights should be zero or positive numbers.  Observations (or
samples) appear as rows in the database.  Each number in the observation is separated by tab.
Each observation must have the same number of variables and is terminated by a newline.
Make sure the last line of data is followed by a newline, or it may not be read.

An example database file, depicted in Figure 3.1, has four variables including a column of
observation weights; observations are in two blocks, four in the first block, and five in the
second.  The weights have value only in relation to each other and may use any positive scale;
so weights of 0.1, 0.2, and 0.25 are equivalent to those in Figure 3.1.  Weighting an observation
with zero is the same as removing the observation.  Doubling an observation weight is the same
as duplicating the observation with the original weight.  Weights can be used to discount data
of dubious value and emphasize data of known quality, or to make up for underrepresented
points in the training region of interest; see the Database Tips section following.

1.01
1.12
1.04
1.09
----
0.06
0.24
0.17
0.02
0.14

x2
2.05
2.14
2.07
2.02

1.56
1.31
1.23
1.42
1.29

y
1.00
1.01
1.02
1.03

2.32
2.71
2.37
2.45
2.69

block separator

first block

second block

a weighted
observation

optional sizes2 4 5

variable labels

x1 weight
1.0
1.0
1.0
1.0

2.0
2.0
1.0
2.5
2.0

optional we ights

Figure 3.1: Example Database File

When creating a database for a classification problem, the user has two options for output
specification:

• making a single output for which each class is a possible value, or
• making  probability output variables for each class.

The single-output file format permits the user to enter strings as values for each observation.
The strings may include letters, digits, and underscore, but must begin with a letter.  An example
of a single-output file format (without the optional sizes) appears in Figure 3.2.  For this
example, x1 and x2 are inputs, Class is the name of the output, and mouse, dog, and cat are the
possible classes.
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x1

1.01
1.12
2.0 4
442.14
1.14
1.24

x2

2.05
2.14
2.37
2.32
3.06
2.95

Class
mouse
mouse
dog
dog
cat
cat

single output
i bl

output values are
class names

Figure 3.2: Example Single-Output File for Classification Problem

True class values can also be specified with the probability-outputs file format as in Figure 3.3.
The values for each class output are probabilities that the input data values represent the
given class.  For measured data, enter a number between 0 (data do not represent this class) and 1
(data represent this class).  

x1
1.01
1.12
2.04
2.14
1.14
1.24

x2
2.05
2.14
2.37
2.32
3.06
2.95

mouse
1
1
0
0
0
0

variable names 
are class namesdog

0
0
1
1
0
0

cat
0
0
0
0
1
1

output values are 
class probabilities

Figure 3.3: Example Probability-Outputs File for Classification Problem

DB DATABASE MANIPULATION TOOL

DB is a general purpose tool for manipulating any database formatted as described above;
numeric and classification string data are preserved.  The program provides functions to modify
or sort existing variables, append new variables to or select observations from an existing
database, or create a new database.  Several functions display statistics or metrics for variables
in a database.  DB can split a database into two new databases for GNOSIS training and
evaluation, or merge multiple databases into one.    Finally,  DB can shift time-series data to
produce delay or advance variables.  

A brief definition of each DB function is given below.   To get detailed help, enter
db -help -function

where function is one of the commands listed below; also see Appendix D.  Most functions require
an input and output database filename.  In general, filenames should be distinct, although in
practice many functions will properly overwrite an input database with output data.

Following are DB functions which modify existing databases; i.e., the output database has the
same variables as the input database:

- c l i p Limits one or more variables to specified numeric ranges.
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- ze ro Zeroes one or more variables inside or outside specified numeric ranges.
- so r t Sorts a database using one or more variables as keys.

Following are DB functions which augment existing databases; i.e., new variables are either
appended to the database or output alone in a new database:

- ca lc Calculates new variables from expressions using existing variables and/or
constants  with operators and built-in functions such as sin and log.

-de lay Creates new variables which are delayed or advanced values of existing
variables.

- random Creates a new variable using a uniform or gaussian random number
generator.

-sequence Creates new variables as linear sequences beginning from existing variable
values or constants.

Following are DB functions which make new databases by combining or extracting from existing
databases:

-merge Merges all of the variables, or all of the observations from one or more
databases.

-sp l i t Splits the observations from one database randomly into two partial
databases.

-se lec t Deletes or extracts a list of variables or observations based on
block/observation range or sequence,  or value of one or more variables.

Following are DB functions which produce displays rather than databases:
-he lp Shows the syntax of every DB function,  or detailed help for any specified

function.
- co r r Shows the linear correlation between pairs of variables.
-h is to Shows the distribution with histogram bins for one or more variables.
-s ta ts Shows the range, mean, median, standard deviation and variance for one or

more variables.

For single-output classification data, the numeric DB functions use the underlying indices of the
strings for calculations and produce new data as numbers.  For example, "-calc new_var=old_var
-a", where old_var is a column of class strings, preserves old_var as strings and appends a
column, new_var, which are the integer indices of the strings, beginning with 0.

DB functions are specified and parameterized using command-line options, one function per DB
invocation.  Multiple DB command lines may be written in a command file named db.cmd .  I f
DB is invoked without parameters, it processes all of the commands found in the db.cmd
command file.  DB command files can be documented by comment lines beginning with '#'.  The
commented command file capability allows the construction of more complex database
transformations.  For example:

# Add observation numbers for identification; preserve original database.in
db -sequence database.in OBS 1 1 -out database.tmp1

# Characterize TORQUE
db -stats database.in TORQUE
db -histo database.in TORQUE 5
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# Convert variable TORQUE to 0 below threshold 10000, 1 above the threshold
db -zero database.tmp1 TORQUE 10000 $ -out database.tmp2
db -clip database.tmp2 TORQUE 0 10000 -out database.tmp1
db -calc database.tmp1 AT_THRESHOLD=TORQUE/10000 -a -out database.tmp2
db -select database.tmp2 -del TORQUE -out database.tmp1

# Split 80% of observations into training database, 20% into evaluation database
db -split database.tmp1 -obs 0.8 -out database

When using DB on a UNIX platform,  single or double quotes should enclose any expressions
which include UNIX control characters such as ‘∗ ’  For example:

db -calc database.in Qbar="Rho ∗  V ∗  V/2" -a -out database.out

To redirect DB displays, such as the output from -stats, -histo, and -corr functions, to a UNIX  or
DOS file, append "> file" to the DB command.   On a Macinstosh, console output can be saved
after the run; Command Q exits the program and offers a Save option.

DATABASE TIPS FOR GETTING THE BEST MODEL PERFORMANCE

The quality of a generated model is dependent upon the data used to train the model. There are
several issues to consider when developing a training database : numbers of observations and
variables, and quantification of variables, outliers, and data region boundaries.

To provide adequate data, include enough observations with sufficient variety to represent the
possible combinations of variable values. Also, if using GNOSIS for a classification problem,
equal numbers of exemplars for all classes in the database will improve the modeling process,
assuming the prior expectations of the classes are equal.  For instance, if a total of 1,000
observations are available for five classes, it is desirable to have approximately 200
observations for each class. If one or more of the classes must be underrepresented (i.e., the
desired quantity of data is not available), be sure to include as many observations as possible.
Add a column of constant observation weights to the database using the DB –calc weight=1.0
function.  Then increase the weights of underrepresented classes until the weight sum for each
class is equal.   This will assure proper weighting, but is much less desirable than having a
database comprised of unique exemplars.

The second database issue involves the correct quantification of the database values. The
variable values should be properly quantified by being single-valued and reflecting true
magnitudes. For example, there is only a single case in which one can use degrees (or radians)
and adhere to the two guidelines for quantifying data (see Figures 3.4 - 3.6):
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Characteristics:

Not single-valued (i.e. 45° = 405°).
Value does not reflect magnitude 
(i.e. 405° is as close to 0° as 45°).

45°

405°

Values of degree are 
not restricted

Figure 3.4: Unrestricted Angle Values

315°

45°

0° < degree  ≤  360°

Characteristics:

Single-valued.
Value does not reflect magnitude 
(i.e. 45° is as close to 0° as 315°).

Figure 3.5: Improperly Restricted Angle Values

–180° < degree ² 180°

45°

-45°

Characteristics:

Single-valued.
Value reflects magnitude.

Figure 3.6: Properly Restricted Angle Values

If two of the variables contain the parts of a number in polar coordinates (magnitude, angle), i t
may be safer to use Cartesian coordinate (x,y) equivalents instead. They can be calculated using
the DB -calc function:

x  =  magnitude ∗  cos(angle) y  =  magnitude ∗  sin(angle)
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Likewise, sin(angle) and cos(angle) should be used in lieu of angle if angle is unbounded.

Many time series data are cyclical or have harmonic content.  An example is the total power
demand imposed on an electrical grid;  this usually has diurnal and seasonal periodicities.  I t
can be helpful to encode time (t) as two variables (t1 and t2) for each period of interest;  thus

t1   =   sin 



 

t – tref
T   t2   =   cos 



 

t – tref
T   

where tref is a reference time (perhaps 0000 hours on the first day of Winter) and T is the period

of interest (24 hours, 365 days, etc.).

To explain the next database issues, outliers and data region boundaries, the term region must be
defined. Each input variable consists of certain typical values that define a one-dimensional
region (a mathematical domain). Combining n of these variables and their respective value
domains, an n-dimensional region is created.

A database may contain one or more outliers, observations that are a great distance from the
heart of the database n-dimensional region. For instance, if an observation in the iris data had
a petal width measurement of 6 feet, it would be reasonable to assume that an error had been
made and that the observation should be removed from the database. A help in identifying i f
the database contains outliers is to calculate the median and mean values of each variable,
using the DB -stats function. If the mean and median have greatly dissimilar magnitudes
and/or have values that are unreasonable for the problem at hand, then it is likely tha t
outliers are present.   The DB -histo function can also help with detection of outliers by
displaying histogram bin counts for each variable.  While GNOSIS is less sensitive to outliers
than many other modeling techniques, outliers can still have a large impact on model
performance and should usually be purged from the training database.  If, however, feedback or
delays exist in a time-series database, outlier observations should not generally be removed.   I f
appropriate, an outlier may be replaced by an average of its immediate neighbors.

The last database issue deals with the boundaries of the n-dimensional region. Empirical
models generally perform less well near the boundaries of their training databases.  The best
way to compensate for this degraded performance is to extend the boundaries of the original
training database to create a new training database that consists of an extended region and the
region of interest. (see Figure 3.7). This is done with the understanding that the model should
only be interrogated in the region of interest. Note that the extended region should not be
excessively large relative to the region of interest, or the incorrect region may be modeled!
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Figure 3.7: Extended Training Database Region

If the training database cannot be extended beyond the region of interest, include, if possible, a
heavier proportion (tighter density) of observations near the edges of the region (and
particularly its corners or vertices) than in its interior (see Figure 3.8).

Edge of 
Region

When region extension is 
not possible, there should 
be a greater concentration 
of observations at the 
edges and the vertices of 
the region of interest.
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Figure 3.8: Distribution of Observations in Unextended Region

For data with a large number of potential inputs, it quickly becomes very difficult to ensure
uniform and dense population of the data space.  Witness the curse of dimensionality.  The
optional structure-learning (ASPN-III) feature of GNOSIS can avoid many of the problems
associated with large-dimensional data sets by selecting appropriate inputs and growing
models made up of low-dimensional components.

RESERVE SOME DATA FOR EVALUATION PURPOSES

To evaluate a model, it is a good idea to set aside some data for independent testing.  The
training database and evaluation database both should be representative of the entire data
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population.  The training database is used to generate a model, and the evaluation database is
then used to test the quality of this model on unseen, statistically similar data.

When using GNOSIS for a classification problem (i.e., when using the logistic-loss function),  or
for an estimation problem with no time-delays, randomly split the database using the DB -
split -obs function.  Randomized database splitting is especially important if the data are
listed systematically (i.e., roughly sorted by one of the variables) because one needs to increase
the likelihood that all sections of the region of interest will be adequately represented in each
database. Such representation is particularly important if the model is meant to be valid over
the whole region, since a model is not likely to do well in an area strange to it.

When using GNOSIS for an estimation problem with time-delays or feedback, the
relationships between the inputs and outputs for a given observation depend on sequential
observations in the same time-series.  The GNOSIS database format lends itself well to
multiple collections of time-series data through the use of blocks.  Randomly split some blocks
into a training database and the rest into an evaluation database using the DB -split -block
function.



4
USING GNOSIS

GNOSIS can generate models or evaluate existing models. The training function is used to create
a model that best describes the relationship between input variables and output variables in a
training database.  GNOSIS provides three options for how the network synthesis is controlled
during training:

• general network structure specification,
• unique network structure specification, and
• structure-learning (optional).

The evaluation function is used to assess the performance of an existing model on data it has not
seen before.  Both the training and evaluation functions are accessed using command-line
options.

This chapter is organized into five sections.  The first describes command line usage.  The next
two detail how to train fixed-structure models using the first two options described above. The
fourth briefly describes how to decide which training option is appropriate for what you are
trying to accomplish.  Evaluation usage is presented in the final section.  The optional structure
learning algorithm is discussed in Chapter 6.

COMMAND-LINE USAGE

GNOSIS uses the syntax conventions of a UNIX style command. All GNOSIS command options
are prefixed with a '-'; option arguments may follow the option.  Command line text can be
stored in a file named gnosis.cmd .  Double click the gnosis icon on a Macintosh or Windows
95/NT PC, or enter:

gnosis

at a UNIX or DOS prompt (after loading Windows 95/NT), and GNOSIS will read the
command line from gnosis.cmd .  The command line file, gnosis.cmd , can have as many lines
as desired, specifying one or more GNOSIS runs.  Blank lines or lines beginning with '#' are
skipped; all other lines are processed as GNOSIS commands.   The gnosis.cmd  file provided
with GNOSIS has training and evaluation commands for all tutorials.
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All other GNOSIS specifications are given in the general structure file (GSF), network
description file (NDF), or optional structure learning file (SLF); output is written to result files
and standard output on the screen.  See Chapter 5, "Interpreting Generated Output," for more
information about the result files.   On a Macintosh, standard output can be sent to a file after
the run; Command Q exits the program and offers a Save option.  On UNIX or DOS platforms,
standard output is redirected by appending a ">file" to the GNOSIS command.  On DOS or
UNIX platforms, GNOSIS can be included in the PATH; otherwise, GNOSIS expects to find
input files and outputs result files in the same directory as the executable file.  

Syntax for the the command line options:

gnosis -h(elp)
gnosis -d(ata) data_file -t(rain) control_file -b(ase) name
gnosis -d(ata) data_file -e(val) model_file -b(ase) name

Full spelling is optional; one character after the '-' is sufficient.  Option -d  gives the data f i le
used to optimize network parameters or evaluate an existing network.  Option -e  gives the
model file to be evaluated; typically the extension is mdl.  Option -t  gives the NDF, GSF, or
optional SLF control file governing the training process; typically the control file has an
extension of ndf, gsf, or slf.  GNOSIS recognizes a GSF by finding the word "general" (case-
insensitive) in the first line of the control file, an SLF by finding "learning".  Otherwise, the
control file is processed as an NDF.   To be sure your control file is properly recognized by
GNOSIS, copy a GSF or SLF from the tutorials or an NDF from a model file produced by
GNOSIS, and  modify it for your purposes.  Option -b gives the base name to be used for a l l
output files; appropriate extensions are added to the base for each output file name.  The base
name is also used in the function names of the output source code.  When doing multiple GNOSIS
runs, use a unique base name for each to avoid overwriting the output files.

TRAINING  WITH A GENERAL STRUCTURE (USING A GSF)

The General Structure File (GSF) provides a quick and easy means for obtaining a simple neural
network for a given database.  Suppose you want to implement a neural network having three
inputs (α, β, γ) and two outputs (A, B), as depicted in Figure 4.1.  Using the GSF, GNOSIS  sets
up a network with three layers.  The input (normalization) layer has one node per input; the
hidden and output (unitization) layers each have one node per output.  Time delays and
feedbacks between the layers may be specified in the GSF.  Normalization and unitization
layers are explained later in this section; a hidden layer is any layer between the
normalization and unitization layers.   Note that the network in Figure 4.1  has a fully
connected hidden layer; i.e. each node receives all of the outputs from the previous layer.
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Figure 4.1: Network Structure for GNOSIS GSF

To run GNOSIS with a GSF, enter the following command:

gnosis -d datafile -t generalstructurefile -b basename

GNOSIS will read in the options from the GSF and create a simple network to meet the selected
options.  A sample GSF appears in Figure 4.2; "general" must appear in line 1.  The GSF follows
a particular format intended to provide the easiest use.  Each line of information contains three
parts - modifier, arguments, and comments - such that the user need only edit the arguments.   
The comments explain what each option means and what the argument options are.  GNOSIS
searches for the modifier and uses whatever follows as its arguments.



GNOSIS Users' Manual

4-4

General Structure File for GNOSIS.
Copyright 1998 by Barron Associates, Inc. All Rights Reserved.

----------------------------------------------------------------------------------------
MODIFIER ARGUMENTS |COMMENTS
----------------------------------------------------------------------------------------
Inputs USE_VSTRING |USE_VSTRING, or enter input variables by name,

|ending with'|'
Outputs USE_VSTRING |USE_VSTRING, or enter output variables by name,

|ending with'|'
Vstring yyxx-x |Specify inputs/outputs: y, x, -, integer

|repeat count (only used if USE_VSTRING
|option entered for Inputs or Outputs)

Weights weight |Optional observation weight variable
Distortion_Function QUADRATIC |Indicate distortion (loss) function for

|GNOSIS to use (QUADRATIC/LOGISTIC)
Normalize NO |Normalize inputs (YES/NO)
Unitize NO |Normalize/Unitize outputs (YES/NO)

|(only used if Distortion is QUADRATIC)
Init_Network_With_Database NO |Use database data to fill shift registers

|with "true" data before optimizing (YES/NO)
----------------------------------------------------------------------------------------
Input_Delays CUSTOM |Format for input delays (LINEAR/LOG/CUSTOM)
    |LINEAR: delay[i] = previous_delay + Space_Delay
   |LOG: delay[i] = Start_Delay + 2^i - 1
    |CUSTOM: enter delays in In_Custom_Delays
Start_Delay 0 |Smallest delay used in each node >= 0
Space_Delay 3 |Spacing between delays >= 1
Max_Delay 15 |Maximum delay for each node > Start_Delay
Custom_Delays 0 |Delay values >= 0 separated by spaces or tabs
----------------------------------------------------------------------------------------
Use_Prior_Data_Base_Outputs NO |Use past values of DATABASE output columns

|as network inputs (YES/NO)
Use_Prior_Node_Outputs NO |Use past values of NODE output(s) as inputs

|to node - i.e. feedback (YES/NO)
Output_Delays CUSTOM |Format for output delays (LINEAR/LOG/CUSTOM)

|LINEAR: delay[i] = previous_delay + spacing
|LOG: delay[i] = start + 2^i - 1
|CUSTOM: enter delays in In_Custom_Delays

Start_Delay 1 |Smallest delay used in each node >= 1
Space_Delay 3 |Spacing between delays >= 1
Max_Delay 16 |Maximum delay for each node > Start_Delay
Custom_Delays 1 |Delay values >= 1 separated by spaces or tabs
----------------------------------------------------------------------------------------
Limit_Nodes ALL |Set which nodes to limit.  Nodes from input

|and output layers limited with database
|training values.  (IO/ALL/NONE)

Limit_Range 1.0 |Percentage of full range (0.01 - 1.0) that
|node outputs  will be limited to. (only used
|if Limit_Nodes is ALL)

----------------------------------------------------------------------------------------
Node_Type COMP |Specify polynomial structure type

|(ADD/MULT/COMP/CUSTOM) ADD = additive,
|MULT = multilinear, COMP = complete

Node_Degree 2 |Maximum allowable degree of polynomial term
Node_Bias YES |Include bias term in polynomial (YES/NO)
Custom_K_Matrix_File ?.kmx |File name of custom K matrix
Post_Trans LIN |Choose post transformation (LIN/SIN/COS/SIG)
----------------------------------------------------------------------------------------
Write_Pix_File YES |Write node connections diagram and node

|equations to .pix file
Write_Source_Code YES |Write source code to .c and .h files
----------------------------------------------------------------------------------------

Figure 4.2: Example General Structure File

MODIFIER DESCRIPTIONS

Each of the fields in the General Structure File are explained in detail below, in the order they
appear in the GSF.  Most of these fields are application independent.  This means you can run
GNOSIS with any setting (provided the setting is logically sound, i.e., a boolean variable gets
set to YES or NO and not to 5.78) regardless of the data file.  However, the first three GSF
fields--Inputs, Outputs, and Vstring--are application specific.  If they are not set correctly for
each data file used, program execution will terminate.
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Inputs and  Outputs [USE_VSTRING or  strings ] |

The inputs and the outputs can be specified to GNOSIS one of two ways.  One way is to
type in the names of the variables as they appear in the database; see Figure 4.3.  The
other way is the Vstring option, selected by entering USE_VSTRING as the argument for
Inputs or Outputs.  In either case, a '|' must appear after the arguments so GNOSIS stops
reading arguments.  Inputs and Outputs are processed by the same method; i f
USE_VSTRING is specified for either, the Vstring method is used for both.

Vstring [x, y, - codes ]

If either Inputs or Outputs have USE_VSTRING arguments, then GNOSIS reads the
Vstring  modifier and its arguments.  All variables of the database are assigned to be
inputs, outputs, or other with 'x', 'y', or '-' respectively.  For example, the Vstring  , -
xxxxyy , is appropriate for a database header such as
unwanted_data   Input_1   Input_2   Input_3   Input_4   Output_1   Output_2

A number preceding an 'x', 'y', or '-' tells GNOSIS to repeat the character tha t
immediately follows, so the data above could also be represented using the Vstring , -
4xyy.  To get a better idea of how the Inputs , Outputs , and Vstring  modifiers are
assigned, see Figure 4.3 below.

Database Header
A B Alpha Beta Class Gamma

Use Vstring
Inputs USE_VSTRING |
Outputs USE_VSTRING |
Vstring yyxx-x |Outputs A, B; Inputs Alpha, Beta, Gamma; ignore Class

Enter Inputs and Outputs by Name
Inputs Alpha Beta Gamma |
Outputs A B |
Vstring don't care |ignore Class

Single-Output Classification Data
Inputs USE_VSTRING |
Outputs USE_VSTRING |
Vstring --xxyx |Outputs are classes listed under Class

Figure 4.3 : Examples of I/O Indication

If a single variable is listed after Outputs or one 'y' is encoded in Vstring, and the
specified database column contains class strings, Outputs is expanded to the set of
classes found in the database.  See Chapter 3 for the single-output database format.

Weights [ string ]
The weights entry is optional; if omitted, all database observations are weighted
equally.  To change the weighting, enter the variable name of a column giving relative
weights to all observations; weights must be zero or positive.  Weights affect the
gradient calculations in both network parameter optimization and network structure
learning, for both quadratic and logistic-loss functions, and affect the corresponding
reported scores.

Distortion_Function [QUADRATIC/LOGISTIC]
Select QUADRATIC to use the squared-error loss function for estimation problems.  Select
LOGISTIC  to use the logistic-loss function for classification problems.
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Normalize and  Unitize [YES/NO]
If the database input and/or output variable values vary greatly in their orders of
magnitude, it may be difficult to obtain high accuracy in parameter optimization.
Select Normalize  and/or Unitize  to transform the data so that optimization occurs on
data values of similar magnitude.  GNOSIS provides input and output layers with the
sole purpose of normalizing or unitizing the data values.  If normalization or
unitization are not selected, these nodes "pass" the input values unchanged to their
outputs.

The parameters of the normalizing and unitizing layers are computed, not optimized as
are the rest of the network parameters. The normalizing and unitizing nodes are linear
polynomial nodes of the form

y(t)   =   P0  +  P1 x(t)

where P0 and P1 are given by:

Normalization: P0 = – mean/sigma  P1 = 1.0/sigma
Pass Through: P0 = 0.0 P1 = 1.0
Unitization: P0 = mean P1 = sigma

and y(t) is the node output, x(t) is the node input (which could be database inputs or
outputs), "mean" is the mean of the training database values of x(t), and "sigma" is the
standard deviation of the training database values of x(t).

Enabling Normalize  causes GNOSIS to normalize input values of the neural network.
Enabling Unitize  causes GNOSIS to train the network on normalized output data and
then appropriately unitize the outputs of the neural network to obtain the original
units of the data.  Unitize  is not available for LOGISTIC  distortion function; pass
through parameters are always used for the output layer.

Init_Network_With_Database [YES/NO]
This option only affects networks with input and/or output time delays.  Enable this
flag to fill the input layer nodes with database inputs, and fill output layer nodes with
database outputs before network processing.  All other nodes are initialized with
zeroes.  To initialize all nodes with zeroes, select NO.  If YES is selected, the number of
observations used for initialization vs. evaluation  is reported in the statistics file.

Input_Delays [LINEAR/LOG/CUSTOM]
Input delays can be set in one of three ways: CUSTOM, LINEAR, and LOG.  See Figure 4.4
for examples of each option.  For static feedforward networks, there are no delays a t
the inputs.  The nodes should have one delay with a value of zero; select CUSTOM and
enter the zero delay in Custom_Delays .

Select LINEAR to set the input delays linearly such that

delay[i] = previous_delay  + spacing
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where the starting value, the spacing value, and the maximum delay value are
specified with Start_Delay , Space_Delay ,  and Max_Delay  respectively.

Select LOG to set the input delays logarithmically such that

delay[i] = start + 2 i- 1

where the starting value and the maximum delay value are specified with
Start_Delay  and Max_Delay  .

Static Network, with Input Delay of 0 Using CUSTOM Format
Input_Delays CUSTOM |
Start_Delay don't care |
Space_Delay don't care |
Max_Delay don't care |
Custom_Delays 0 |

Input Delays of 0, 3, 6, and 9 Using LINEAR Format
Input_Delays LINEAR |
Start_Delay 0 |
Space_Delay 3 |
Max_Delay 9 |
Custom_Delays don't care |

Input Delays of 1, 2, 4, and 8 Using LOG Format
Input_Delays LOG |
Start_Delay 1 |
Space_Delay don't care |
Max_Delay 8 |
Custom_Delays don't care |

Figure 4.4: Examples of Input Delay Specification

Start_Delay [ integer ]
If LINEAR or LOG is selected for Input_Delays  or Output_Delays , then
Start_Delay  gives the first delay value.  The first delay value must be zero or
more for Input_Delays , and one or more for Output_Delays , described below.

Space_Delay [ integer >= 1 ]
If LINEAR is selected for Input_Delays  or Output_Delays , then Space_Delay
gives the spacing value between sequential delays.

Max_Delay [ integer ]
If LINEAR or LOG is selected for Input_Delays  or Output_Delays , then
Max_Delay  gives the maximum delay value.  The last delay value in a linear or
log sequence will be less than or equal to Max_Delay .  The maximum delay must be
more than Start_Delay .

Custom_Delays [ integers ] |
If CUSTOM is selected for Input_Delays  or Output_Delays , then
Custom_Delays  gives the delay values.  Enter the desired delay values,
separating each value with spaces or tabs and ending with a '|'.   Delays must be
zero or more for Input_Delays , and one or more for Output_Delays .



GNOSIS Users' Manual

4-8

Use_Prior_Data_Base_Outputs [YES/NO]
Feedback tends to be difficult for neural network synthesis; enabling this flag can
assist GNOSIS in achieving optimal network performance that may not have been
realized by simply feeding back network outputs.  Select
Use_Prior_Data_Base_Output  to use prior (delayed) values of the true network
output as candidate inputs to the network.  The number of samples to delay the true
network parameters before input to the network are specified in the
Output_Delays  section.

Once GNOSIS has determined the optimal neural network transformations, edit
the output model file (Network Description File) so that fed-back network
estimates of node outputs are used rather than prior (delayed) values of the true
parameters.  By editing the Network Description File (NDF) in this manner,
GNOSIS generally has a better chance of obtaining optimal network
transformations, because GNOSIS begins the network synthesis using already-
optimized parameters.  Disable the Unitize  option prior to network synthesis,  to
ensure that hidden layer outputs are equivalent (if being fed back) to using delayed
database output values as inputs.

Use_Prior_Node_Outputs [YES/NO]
Enable this flag to use past values of hidden layer node outputs as inputs to
themselves (self-feedback).  The number of samples to delay the node outputs
before input to the network is specified in the  Output_Delays  section.

Output_Delays [LINEAR/LOG/CUSTOM]
Output delays actually refer to feedback delays.  Therefore, the Output_Delays
option  and associated fields are used only if Use_Prior_Data_Base_Outputs is
YES or Use_Prior_Node_Outputs  is YES.  All output delay values must be at least
one.  Otherwise, output delays are specified in the same way as input delays.  

Limit_Nodes [IO/ALL/NONE]
Select which nodes of the network will limit their outputs.  When training a network,
GNOSIS stores the output range for each node.  For input and output nodes, GNOSIS
computes the  maximum and minimum values from the database.  For hidden nodes,
GNOSIS computes the range of the node output.  During evaluation, these minimum and
maximum values may be used to limit nodal outputs.  Select IO  to limit only the node
outputs of the input and output layers of the network.  Select ALL to limit the outputs of
all nodes in the network.  Select NONE to do no limiting.  For LOGISTIC  distortion
function, the output layer nodes are not limited in any case.  For sigmoid post
transformation, hidden layer nodes are not limited, since the transformation limits
implicitly.

Limit_Range [ decimal ]
If Limit_Nodes  is ALL and Post_Trans is not SIG , then Limit_Range  gives the
percentage of the full range of values that the hidden layer nodal outputs will be
limited to in evaluations and generated source code usage.   Valid values are 0.01
through 1.0, but values at or near 1.0 are recommended.
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Node_Type [ADD/MULT/COMP/CUSTOM]
Select the polynomial type of all hidden layer nodes.  ADD specifies additive
polynomials for the structure of the network elements.  Additive polynomials have no
cross terms.  The degree of the polynomial (specified with Node_Degree ) indicates the
highest power to which each element input variable can be raised.  For example, i f
Node_Degree  is 3, the most complex element structure that GNOSIS attempts for a two
input element is θ0 + θ1x1 + θ2x12 + θ3x13 + θ4x2 + θ5x22 + θ6x23.

MULT specifies multilinear polynomials for the structure of the network elements.  The
degree of the polynomial indicates the maximum number of input variables that may be
included in a cross-product term.  No input is raised to a power greater than one.  For
example, if Node_Degree  is 3, the most complex element structure that GNOSIS
attempts for a three input element is θ0 + θ1x1 + θ2x2 + θ3x3 + θ4x1x2 + θ5x1x3 + θ6x2x3 +
θ7x1x2x3.

COMP specifies complete polynomials for the network element structures.  In this case,
Node_Degree  specifies the highest degree to which node polynomial inputs will be
exponentiated and cross-multiplied.  For example, when GNOSIS tries elements with
two inputs and Node_Degree  is 3, the most complex structure attempted is θ0 + θ1x1 +
θ2x12 + θ3x13 + θ4x2 + θ5x2x1 + θ6x2x12 + θ7x22 + θ8x22x1 + θ9x23.

Experience shows that in many applications just the cross terms, xixj, represent
nonlinearities very effectively.  Eliminating all "raising to a power" terms from a
complete polynomial structure reduces complexity of the element, yet retains its power
to introduce nonlinearities when such are needed to produce the desired output.

CUSTOM  specifies that polynomial powers are given in a custom K matrix; see
Custom_K_Matrix_File  below.

Node_Degree [ integer >= 1 ]
Enter the highest degree of the hidden layer polynomial elements GNOSIS should try
during network synthesis.    

Node_Bias [YES/NO]
Enable this flag to include a bias term (constant) in the hidden layer polynomial
elements.  

Custom_K_Matrix_File [ name.kmx]
If CUSTOM is selected for Node_Type , then GNOSIS reads the       K       matrix for the hidden
layer polynomials from a file.  Read the information on the       K       matrix in the "Training
with the Structure Specified (Using an NDF)" section that appears later in this
chapter (page 4-11).

To specify a       K       matrix, first determine how many core inputs each hidden layer element
has.  Each row in the       K       matrix file must have as many numbers as there are core inputs
for the network.  The number of core inputs is the number of input variables times the
number of input delays plus (if using database outputs as inputs) the number of output
variables times the number of output delays plus (if using node outputs as inputs) the
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number of output delays.  Each row represents a term of the polynomial, and the user
may have as many terms as desired.  Each line in the file should contain integers
referring to the power to which the corresponding core inputs are raised, separated by
spaces or tabs.

To find the core input to which each       K       matrix column refers, first run GNOSIS with
another Node_Type  option so that an output network description file (the *.mdl  f i le)
can be studied.  See the "Training with the Structure Specified (Using an NDF)" section
for details on the NDF       K       matrix format.

For a network with two inputs, one output, two input delays, and three output delays,
Figure 4.5 represents a valid custom       K       matrix file corresponding to the expression:

θ0 x1(t) x1(t–1) y2(t–1)  +  θ1 x22(t) x22(t–1) y(t–3)  
+   θ2 y(t–3)  +  θ3 x1(t) x1(t–1) x2(t–1) y(t–2)  

1	 1	 0	 0	 2	 0	 0
0	 0	 2	 2	 0	 0	 1
0	 0	 0	 0	 0	 0	 1
1	 1	 0	 1	 0	 1	 0

2 input variables × 2 input delays

1 output variable × 3 output delays

parameter θ0
parameter θ1
parameter θ2
parameter θ3

x1(t) x1(t–1) x2(t) x2(t–1) y(t–1) y(t–2) y(t–3)

Figure 4.5: Example Custom      K      Matrix File

Post_Trans [LIN/SIN/COS/SIG]
Select the post transformation for all hidden layer nodes.  The post transformation,
h(z), is applied to the output of the polynomial core transformation to produce the
output of the node.  The available transformations are:

LIN h(z) = z
SIN h(z) = sin(z)
COS h(z) = cos(z)

SIG h(z) = 
1

1+e–βz
 β = sigmoid gain, default 1.0

Write_Pix_File [YES/NO]
Enable this flag to write a node connections diagram and node equations to a *.pix  f i le,
where '*'  is the base of the database filename.

Write_Source_Code [YES/NO]
Enable this flag to write C-language source code to *.c  and *.h  files, where '*'   is the
base of the database filename.  The source code and bai_src library can be used in C-
language programs to evaluate the network modeled by GNOSIS.
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TRAINING WITH THE STRUCTURE  SPECIFIED (USING AN NDF)

The Network Description File (NDF) serves two purposes:

1. It allows the user to specify a network structure and initial parameter values,
and indicates which parameters are to be optimized (i.e., acts as an input file).

2. It communicates to the user the found optimum coefficient values (i.e., acts as an
output file).

Consider a neural network with three inputs (α , β, γ) and two outputs (A, B) that matches the
following equations:

A(t) = θ0 α(t) + θ1 α(t–1) + θ2 β(t–1) + θ3 β(t–3)
B(t) = θ4 β(t) + θ5 β(t–1) + θ6 γ(t) + θ7 γ(t–1)

This neural network structure would have two hidden nodes and could be diagrammed as in
Figure 4.6.  The corresponding NDF is shown in Figure 4.7.

α

β

γ

Α

Input Layer Hidden Layer Output Layer

y(t) = θ0 
          + θ1 x1(t)

y(t) = θ0 
          + θ1 x1(t)

y(t) = θ0 
          + θ1 x1(t)

y(t)	 =	 θ0 x1(t)
	 + θ1 x1(t–1)
	 + θ2 x2(t–1)
	 + θ3 x2(t–3)

y(t)	 =	 θ0 x1(t)
	 + θ1 x1(t–1)
	 + θ2 x2(t)
	 + θ3 x2(t–1)

y(t) = θ0 
          + θ1 x1(t)

Β
y(t) = θ0 
          + θ1 x1(t)

Figure 4.6: Network Structure for GNOSIS NDF

Note that in Figure 4.6, the variable, x, is used generically to represent the input to a node;
thus, x1 in one node is not the same variable as x1 in another node.  Also note that unlike the
GSF-specified structure shown in Figure 4.1, the NDF-specified structure is not fully connected
and only calls out certain specific terms in the polynomial nodes.
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GNOSIS NETWORK DESCRIPTION
Inputs: Alpha Beta Gamma  |
Outputs: A B  |
Class_Single_Output: NO
Weights: weight
Number_of_Layers: 3
Distortion_Function: QUADRATIC
Reg_Penalty: 0.0001
Normalize: NO
Unitize: NO
Limit_Nodes:  NONE
Init_Network_With_Database: NO

NETWORK STRUCTURE
---------------------------------------

INPUT_LAYER:
NODE_0-0 DESCRIPTION:

Parameters: 0 1
Output_Range: 0 0

NODE_0-1 DESCRIPTION:
Parameters: 0 1
Output_Range: 0 0

NODE_0-2 DESCRIPTION:
Parameters: 0 1
Output_Range: 0 0

---------------------------------------

LAYER 1:
Number_of_Nodes: 2
Core_Transformation: POLY
Post_Transformation: SIG
Sigmoid_Gain: 1.0
NODE_1-0 DESCRIPTION:

Input_Node(s): 2
NODE 0 - 0

Delays: 0 1
NODE 0 - 1

Delays: 1 3
Parameters:

0.1 -0.1 0.1 -0.1
Set_of_Indices:

1  0  0  0
0  1  0  0
0  0  1  0
0  0  0  1

Optimize: YES
Output_Range: 0 0

NODE_1-1 DESCRIPTION:
Input_Node(s): 2

NODE 0 - 1
Delays: 0 1

NODE 0 - 2
Delays: 0 1

Parameters:
0.1 -0.1 0.1 -0.1

Set_of_Indices:
1  0  0  0
0  1  0  0
0  0  1  0
0  0  0  1

Optimize: YES
Output_Range: 0 0

---------------------------------------

OUTPUT_LAYER:
NODE_2-0 DESCRIPTION:

Input_Node:  1 - 0
Parameters: 0 1
Output_Range: 0 0

NODE_2-1 DESCRIPTION:
Input_Node: 1 - 1
Parameters: 0 1
Output_Range: 0 0

---------------------------------------

Figure 4.7: Example Network Description File (NDF)

Normalization and Unitization Layers
See the Normalize  and Unitize  options in Chapter 4 for an explanation of normalization and
unitization layers.  The zeroth layer of the network contains one "normalizing" node per
network input. If normalization is not desired, this layer is configured to simply "pass through"
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the input data.  The last layer contains one "unitizing"  node per network output. This layer has
the same number of nodes as the second-to-last layer.

Node Identification Convention
In the NDF, nodes are labeled as NODE L-N, where L is the layer number and N is the node
number on the given layer. The layer numbers start at zero at the input/normalization layer
and increment by one at each succeeding layer. The node numbers within a layer start at zero
and increment sequentially as well.

Specification of Delay Values
For hidden layer nodes, the NDF specifies the source of the inputs and the delays associated
with each input, just as they would appear in a difference equation.  For example, if the
difference equation of a node were

y(t)   =   x(t)  +  x(t–1)  +  y(t–1)  +  y(t–2)

the NDF  input delay specification for the node would be:

NODE_1-0 DESCRIPTION:
Input Node(s): 2

NODE 0 - 0
Delays: 0 1

NODE 1 - 0
Delays: 1 2

Every hidden layer node must have at least one input node, but an input node can come from any
normalization or hidden layer node.  Delay values of input nodes from the same layer or a later
layer must be one or more.  The delay values may be listed in any order.

Core and Post Transformations
Each node in the network performs a core transformation function on the inputs to produce a
single output.  Then a post transformation function operates on the output of the core
transformation to produce the output of the node.  Currently GNOSIS uses a polynomial core
transformation for all nodes, and a linear post transformation for all input and output layer
nodes.  The post transformation for each hidden layer  is selectable and may vary from layer to
layer.  If linear, sine, or cosine transformations are selected, hard limits may be applied with
the Limit_Nodes  and Limit_Range  options.  If the sigmoid transformation is selected, hard
limits are not applied due to the clipping nature of the function.  An initial sigmoid gain of 1.0
is recommended; increasing the gain makes the output more closely approximate a hard limit.

Set of Indices (or      K      matrix)
The inputs to the core transformation function are referred to as core inputs.  Each input to a node
provides as many core inputs as the number of delays specified for that node input.   So for a
node of the form

y(t) = θ0 + θ1x1(t–1) + θ2 x1
3 (t) + θ3 x1(t) x2(t–3) + θ4 x2

2 (t–1) 
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there are four core inputs even though the node only has two external inputs.  The core inputs
are x1(t–1), x1(t), x2(t–3), and x2(t–1).

To relate the core transformation function to GNOSIS, the user must specify a       K       matrix.  Rows of
the       K       matrix represent the parameters of the polynomial terms, the columns stand for the core
inputs, and the individual matrix elements specify the power to which the corresponding input
is raised.  The θ0 bias term is handled by a row of zeroes in the       K       matrix.

Thus the       K       matrix corresponding to

y(t) = θ0 + θ1 x1(t–1) + θ2 x1
3 (t) + θ3 x1(t) x2(t–3) + θ4 x2

2 (t–1) 

with the columns referring to x1(t–1), x1(t), x2(t–3), and x2(t–1), respectively, is

      K       =    







    
0 0 0 0
1 0 0 0
0 3 0 0
0 1 1 0
0 0 0 2
    

 

For each node in the hidden layers (all layers except the normalization and unitization
layers), specify the       K       matrix in the NDF by entering the       K       matrix numbers starting on the line
after Set_of_Indices :

Set_of_Indices:
0 0 0 0
1 0 0 0
0 3 0 0
0 1 1 0
0 0 0 2

NETWORK DESCRIPTION FILE SYNTAX

Incorrectly specified NDFs usually bring about error messages, but syntax errors may go
undetected and result in incorrect network descriptions.  To ensure that the NDF is correctly
developed, start with an existing NDF generated by GNOSIS using either a GSF or optional
SLF.  Output NDF's (*.mdl  files) are generated by every run of GNOSIS, and any output NDF
can also be used as an input NDF.  By editing  an existing NDF, one can change the network-
specific parts of the file and prevent formatting errors.  

The network must be described completely and in the correct order:
1. GNOSIS network description
2. Input layer
3. Hidden layers (in order)
4. Output layer

All NDF specifications must be separated by spaces or tabs, and may be followed by comments
starting with '|'.  Bold text below has been written as it should appear in the NDF; bracketed
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text refers to user-specified text.  N refers to an integer; decimal is any value with or without a
decimal point.  End the last line of text with a carriage return, or it may not be read by
GNOSIS.

Network Description Section

Inputs: [ strings ] |
Specify the names of external inputs into the entire network, matching labels in the
database file.  There must be the same number of nodes in the input layer as strings.
Input layer Node_0-0  applies to the first string, Node_0-1  to the second string,
etc.

Outputs: [ strings ] |
Specify the names of outputs of the entire network, matching labels in the database
file.  There must be the same number of nodes in the last hidden layer, and nodes in
the output layer as strings.  For a single-output classification problem, the strings
should be the set of class strings found as outputs in the database; see Chapter 3.

Class_Single_Output: [ string or  NO]
If Outputs  is a list of class strings from a single-output format database, enter the
name of the output column in the database header.  Otherwise, select NO .

Weights: [ string ]
This entry is optional; use it to specify the name of an observation weighting column
in the database file.

Number_of_Layers:  [ integer >= 3 ]
Specify the number of layers in the entire network.  There must be at least three to
account for one input normalization layer, one or more hidden layers, and one output
unitization layer.  

Distort ion_Funct ion:  [QUADRATIC/LOGISTIC]
Select QUADRATIC for the squared-error loss function used for estimation problems.
Select LOGISTIC  for the logistic-loss function used for classification.

Reg_Penalty:  [dec imal ]
Specify the penalty on the magnitude of network parameters.  A larger penalty
sacrifices network performance to keep the parameters smaller, which results in a
network with smoother output and better able to generalize on unseen data.

Normalize: [YES/NO]
Select YES to normalize the inputs; input layer Parameters  will be -mean/sigma
and 1.0/sigma of the database inputs.  Select NO to pass the inputs through to the
hidden layers; input layer Parameters  will be 0.0 and 1.0.

Unitize: [YES/NO]
If Distortion_Function  is QUADRATIC, select YES to unitize the outputs; output
layer Parameters  will be mean and sigma of the database outputs.  Select NO to
pass the outputs of the last hidden layer through to the network output; output
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layer Parameters  will be 0.0 and 1.0.  If Distortion_Function  is LOGISTIC,
unitization is not available and pass-through parameters are used.

Limit_Nodes: [IO/ALL/NONE]
Limit_Range: [ decimal ]
Init_Network_With_Database: [YES/NO]
See the description of these fields in the GSF section above.

Input Layer Section

INPUT_LAYER:
Title for layer 0.  Input layer nodes must follow in numerical order, one for each
Inputs string.  Each node has the following three fields:

NODE_0–N DESCRIPTION:
Title for node N, numbering sequentially from 0.   The input to this node is the N t h
database input listed in Inputs.

Parameters: [ decimal  decimal ]
Ignore for a training NDF.  For an output NDF model file, these are the
normalization or pass-through parameters.

Output_Range: [ decimal decimal ]
Ignore for a training NDF.    For an output NDF model file,  these are the minimum
and maximum values of the database inputs.

Hidden Layer Section(s)

LAYER N:
Title for layer N, numbering sequentially from 1.

Number_of_Nodes: [ integer >= 1 ]
Enter the number of nodes in this layer.  A node description for each must follow.

Core_Transformation: POLY
The core transformation applied to all nodes in this layer.  Polynomial is the only
transformation available at this time.

Post_Transformation: [LIN/SIN/COS/SIG]
The post transformation applied to all nodes in this layer.   The transformations
available are linear, sine, cosine, and sigmoid:

LIN h(z) = z
SIN h(z) = sin(z)
COS h(z) = cos(z)

SIG h(z) = 
1

1+e–βz
 β = sigmoid gain, default 1.0

Sigmoid_Gain: [ 0.1 to 10.0 ]
If the post transformation is SIG , enter a gain for β.
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NODE_L–N DESCRIPTION:
Title for node N of layer L, numbering N sequentially from 0.

Input_Node(s): [ integer >= 1 ]
Enter the number of nodes that are providing inputs into this node.   Each input node has
the following two fields:

NODE L – N
Enter the layer number L and node number N of the source node for this input.  Inputs
can come from any node of any hidden layer, including self-feedback.

Delays: [ integers >= 0 ]
Enter one or more delays for this input.  If an input variable, x, only occurs in
difference equations as x(t), then the delay is 0.  The delays may appear in any
order, but the Set_of_Indices  (      K       matrix) must be specified according to the
delay order.  Feedback inputs must have delays of 1 or more.

Parameters: [ decimals ]
Specify the initial values for the parameters of this node.  If any parameter is 0.0,
GNOSIS randomly perturbs it (standard deviation of 0.001) to obtain initial
values.  Try different initial values if training results are poor.  The output NDF
model file shows the optimized parameters here.

Set_of_Indices: [ one line integers per parameter ]
Enter the       K       matrix of powers.  The number of rows must equal the number of
parameters entered.  A row of zeros signifies a bias term.  The number of columns
must match the sum of all the delays of the node inputs.  The first column
corresponds to the first delay of the first input, the second column corresponds to the
second delay of the first input if it exists, otherwise to the first delay of the second
input, and so on.

Optimize: [YES/NO]
Select YES to optimize all parameters for this node.  Select NO to leave a l l
parameters at their initial values.

Output_Range: [ decimal decimal ]
Ignore for a training NDF.    For an output NDF model file,  these are the minimum
and maximum values of the node outputs  during training.

Output Layer Section

OUTPUT_LAYER:
Title for the last layer.  Output layer nodes must follow in numerical order, one for
each Outputs  string.  Each node has the following three fields:

NODE_L–N DESCRIPTION:
Title for node N of output layer L, numbering N sequentially from 0.   Layer number L
is one more than the last hidden layer.  The input to this node is node N of layer
L-1.
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Parameters: [ decimal decimal ]
Ignore for a training NDF.  For an output NDF model file, these are the unitization
or pass-through parameters.

Output_Range: [ decimal decimal ]
Ignore for a training NDF.    For an output NDF model file,  these are the minimum
and maximum values of the database outputs.

TIPS FOR IMPROVING MODEL PERFORMANCE

Once a network has been created and incorporated into a NDF, more can be done to help
GNOSIS generate the best possible model.

When executing in the training mode, GNOSIS starts the parameters at the initial values in
the NDF, slightly perturbed if zero.  If you have educated guesses about the values of some
parameters, try setting them as initial parameter values.  Even if you only know that a
parameter should be negative, start it at some negative number.  By trying specific starting
values for the parameters, you are "pushing" GNOSIS in a certain initial direction.  Starting
the parameters near their optimal values can make the difference between finding the optimal
parameters and getting trapped in a multi-modal search space.  If you are getting poor results
and have no idea of parameter values, you could try a sequence of synthesis runs starting
parameters at different random values.

You may try multiple network structures or parameter initializations.  For example, dynamic
networks are networks with feedback; consider whether a dynamic network may be
appropriate.  In many applications, dynamic networks result in simpler implementations (i.e.,
fewer network parameters) than do static (feedforward) networks.  This reduces the
probability of overfitting and increases network accuracy and robustness.  Another advantage of
dynamic networks over static networks is that they have the ability to forecast arbitrarily far
into the future (albeit with an accuracy that decreases somewhat with forecast horizon),
rather than requiring that networks be trained for a specific, a priori-specified number of
prediction time steps into the future.

The more you know or suspect about relationships between variables, the more suited to a
particular problem you can make the network structure.  Spend some time considering what
makes sense as far as how inputs and outputs might combine or be fed back to arrive at a suitable
output.  You will probably benefit from making plots of the various input and output variables
to find general relationships.  If the plot of one input with one output appears to be a high-
degree equation, you may want to introduce high-degree terms and cross terms in the
appropriate set of indices (      K       matrix).

In general, the training process will involve developing different NDFs to find the best model.
You can change the number of delays for each input, the number of nodes and their connections in
the network, the sets of indices (      K       matrices), the initial parameter values, etc.  After trying
multiple structures, look at the results of each trial to see how the structures and parameters
correspond to better and poorer results.

Chapter 6 describes use of the ASPN-III structure-learning option for GNOSIS feedforward
estimation networks.  Use of this option avoids being trapped in multi-modal search space, and
ASPN-III automatically identifies a just-sufficient network complexity that minimizes model
error without overfitting the training database.
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WHEN TO USE  THE GSF, SLF, AND NDF

The most important considerations in determining which run option to use are:

• Are the phenomena being modeled static or dynamic?
• How much a priori knowledge of the network structure is available?

If you are modeling a dynamic system with feedbacks and time delays or have a classification
problem, then either the GSF or the NDF should be used.  If you have little idea of the network
structure and want a quick, simple solution, the GSF is the best choice.  Otherwise, use the
NDF, which is much more flexible and allows virtually any desired structure to be optimized
and tested.  

For estimation problems without feedbacks and time delays, structure learning via the ASPN-
III option is available.  Choosing an appropriate structure greatly increases the chances of
obtaining a good model.  Since one does not generally know a priori the structure needed for a
neural network, it is helpful to use the ASPN-III structure-learning algorithm (Chapter 6)
when there are a large number of potential inputs and structures.

EVALUATION

As part of the training process, GNOSIS evaluates a model on the training database.  To
evaluate a model on unseen data, however, GNOSIS must be run in evaluation mode:

gnosis -d datafile -e modelfile -b basename

where datafile is the evaluation database and modelfile is the *.mdl  file (created during
training) describing the model to be evaluated.  When execution is complete, several output
files are created by GNOSIS., named by adding extensions to the given basename These files
are described in detail in Chapter 5.

In general, the evaluation process should be implemented for any model that looked promising
after training.   It is important to evaluate networks on previously unseen data to ensure tha t
they score similarly on both seen and unseen data.

Once a satisfactory model has been produced, the model may also be evaluated by including the
source code (created during training) in an application which reads database inputs and
interrogates the network.  An example application is given in the *.h file; see Chapter 5.
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INTERPRETING

GENERATED OUTPUT

GNOSIS generates output on the standard output display, and in files named using the
basename given on the command line.  GNOSIS overwrites any existing files with the same
names, formed by appending to the basename:

.mdl  for the model Network Description File, generated in the training mode.

.sts for the statistics file, generated in the training and evaluation modes.

.est  for the estimation file, generated in the training and evaluation modes.

The following files are generated by default when training with an NDF, or when selected in a
GSF or SLF:

.pix for the picture file

.c  for the C-language source code file

.h  for the C-language header file

This chapter is organized into three sections.  The first section describes runtime messages
printed to standard output.  The second details files created only during training, while the
third section describes files created in both training and evaluation.

MESSAGES TO STANDARD OUTPUT

When executing in the training or evaluation mode, GNOSIS writes information to the screen
relaying what it is doing.  Most of these runtime messages are self-explanatory.  However, the
ILS optimization messages require some background knowledge to understand.

Optimization Algorithm Messages
GNOSIS employs the Iterative Least Squares (ILS) search algorithm, a regularized Gauss-
Newton optimization method that uses score-surface gradient and curvature (i.e., the pseudo-
Hessian) information.  If the score is not improving, the curvature information is weighted less
and the search devolves into a pure gradient-descent algorithm (i.e., least mean squares).  I f
the score is improving, however, the curvature information is weighted more heavily and the
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search algorithm attempts to jump to the score-surface minimum in one iteration (i.e., Gauss-
Newton).  

The Levenberg-Marquardt method is used to vary smoothly between the extremes of the Gauss-
Newton and gradient-descent algorithms; it achieves this by regularizing the pseudo-Hessian.
If the score is not improving, GNOSIS introduces a regularization factor, lambda, to weight the
gradient-descent information more.  The current iteration number, lambda, and root of the best
score to date are displayed; enter Control C to stop after the current iteration.  Otherwise,
GNOSIS continues iterating until it has satisfied one of the following stopping criteria:

# ILS: Maximum number of iterations reached.
GNOSIS stops if 100 iterations have been tried, to prevent GNOSIS from running for
an excessive time period.  To extend the run beyond this maximum number of
iterations, run GNOSIS again in training mode using the model file just created;
GNOSIS then restarts with the parameters from the prior run.

# ILS: Normalized score below tolerance.
GNOSIS stops if the normalized score is less than 1e–8, indicating very successful
parameter optimization.

# ILS: Normalized score change below tolerance.
GNOSIS stops if the normalized score is changing too slowly.  This happens when
the GNOSIS score has changed by less than 1e–10, three iterations in succession.

# ILS: Maximum lambda exceeded.
Lambda refers to the Levenberg-Marquardt regularization factor used to vary
smoothly between the extremes of the Gauss-Newton algorithm and the steepest-
descent algorithm.  If GNOSIS successively increases the gradient-descent
weighting and the corresponding score ceases to improve, GNOSIS will stop.  This
message probably means that GNOSIS has reached a locally optimal point on the
network response surface.  The maximum lambda is 1e7.

# ILS: Parameter change below tolerance.
GNOSIS stops if all the parameters have essentially converged.  This message
appears when the largest change in all the parameters is less than 1e–10 for three
successive iterations.

Error Messages
If GNOSIS detects problems while processing NDF, GSF, SLF, and database files or while
creating and optimizing the network, it terminates with an error message.  Standard error
messages are:

# ERROR: Processing command line <option>
An option or argument on the command line is improperly specified.  See Chaper 4
for command-line usage.

# ERROR: Opening file <name>
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The named file could not be found; execute GNOSIS  from the same directory as the
input files.

# ERROR: Processing field <string >
# ERROR: Processing field  <string > for NODE  L-N  (NDF only)
# ERROR: Processing field  <string > for LAYER  L  (NDF only)

GNOSIS detected a problem with the named field in the NDF, GSF, or SLF.  Either
the field cannot be found, or in some cases is out of order, or the option specified for
the field is improper.  For example, entering a number for a YES/NO field,
misspelling one of the valid choices for a text field, or entering a number out of
range causes this error.  

# ERROR: Must have at least <N> and at most 256 Inputs and Outputs
Check the Inputs and Outputs specifications in the NDF, GSF, or SLF.  A common
cause for this error is omitting the terminating '|' from the Inputs or Outputs list.
For estimation models, N is 1.  For classification, N is 2; check that a single-output
format database has at least two output values.

# ERROR: Memory allocation
GNOSIS has insufficient system memory to continue allocating data.  Free up or
acquire more memory for your platform, or reduce the complexity of the network
specified.

## ERROR: Reading from database line <N>
The database is improperly formatted; see Chapter 3.  Line 0 indicates a problem
with the header line.  Otherwise N gives the observation number of the first
misformatted line.

# ERROR: Indexing database for <name>
The database is improperly referenced.  Check Inputs and Outputs in the NDF,
GSF, or SLF for proper identification of database variables.

A handful of other special-case error messages may be reported by GNOSIS; instructions are
self-evident or are given in the message.  In all cases, # ERROR is a termination message; the
problem must be resolved and GNOSIS  rerun.

FILES CREATED DURING TRAINING

After training a network, optimizing the structure and/or parameters, GNOSIS creates a
number of files.  Since part of the training process involves evaluating the optimized network
model on the training database, some of these output files are identical to those created when
GNOSIS is run in evaluation mode.  This section details those output files that are created only
in training mode: the model file (*.mdl) , picture file (*.pix) , and source files (*.c and
*.h) .

Output Model File (*.mdl  file)
The model file (*.mdl) has the same format as an input NDF, but provides the optimized
parameter values and some additional information at the top of the file:
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GNOSIS NETWORK DESCRIPTION
Training_Database: feedback.traNorm_RMS_Error: y1 = 0.000183732
y2 = 0.0133094
— or —
Percent_Misclassified: 0.0312568

For estimation models, the normalized root-mean-squared error for each output is the percent of
standard deviation of true output not accounted for by the model output.   The closer the errors
are to zero, the more accurate the model.  For classification models, the percent misclassified
observations out of the total helps assess the accuracy and robustness of the model.  See also the
statistics file for more scoring information.

Output Picture File (*.pix  file)
GNOSIS generates the picture file after training is complete.  This feature can be disabled in
the GSF or SLF; see Chapter 4.  The picture file contains an ASCII diagram of the network
structure and the node equations of the network.   Input and output names are taken from the
database and each node in the network is numbered.  Inputs or nodes that are fed into multiple
nodes are rewritten, so the network picture in the pix file of Figure 5.1 matches the network
structure diagrammed in Figure 5.2

Figure 5.1: Example Pix File (*.pix )

Network:          cannon.mdl
Trained on:       cannon.dat

 velocity-----Node1-+---Node3-+---Node6-----Node7---range
                    |         |
    gamma-----Node2-/         |
                              |
 velocity-----Node1-+---Node4-|
                    |         |
    gamma-----Node2-/         |
                              |
             Node3*-+---Node5-|
                    |         |
    gamma-----Node2-/         |
                              |
            velocit-----Node1-/

A '*' following a node indicates that the node's output is fed in here as an input.

Node1(t) = 1*velocity(t)
Node2(t) = 1*gamma(t)
Node3(t) = 235.85 - 0.108877*Node1(t) + 3.91077e-005*Node1^2(t) - 2.58303*Node2(t)
Node4(t) = -0.0161736*Node2^4(t) + 15413.2*Node1(t) - 0.00168485*Node1^2(t)*Node2^2(t)
           - 59325*Node2(t)
Node5(t) = 8.99247 + 6.7244e-006*Node3(t-1)*Node2(t)
Node6(t) = 16249.9 - 0.0611516*Node3(t)*Node5(t)*Node1(t)
           -0.00471466*Node3^2(t)*Node1(t) + 0.00172708*Node4(t)*Node5(t)
Node7(t) = 1*Node6(t)
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Figure 5.2: Network Structure of Example Pix File

Output Source Files (*.c  and *.h  files)
GNOSIS generates a C-language representation of the network after training is complete.  This
feature can be disabled in  the GSF or SLF; see Chapter 4.  The source code implements the
synthesized network in user applications.  

The header (*.h ) file includes the prototypes of the functions that the application will call.
Also included in the header file in the comment section is a sample C-language main program
that executes the source code file.  The fscanf line must be replaced to read inputs and outputs
from your database;  otherwise the program is ready to evaluate the network and produce a
user.est  output file.   Link the application main program with the *.c  source file and
bai_src.c provided with the GNOSIS package.  

Figure 5.3 shows a sample header file generated by GNOSIS.  Function names depend on the
basename, and parameter names depend on the database variables; look in the generated
header file for the correct interface with the source code.   Dynamic (having time-delays or
feedbacks) networks include the option of using initial observations of data to initialize the
network.
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/*-------------------------------------------------------------------------------
feedback.h

created by GNOSIS using
data:    feedback.tra
control: feedback.gsf

-------------------------------------------------------------------------------*/

/* Sample program to produce estimation file user.est from evaluation data feedback.eva
Provide fscanf line to read your database; link with feedback.c and bai_src.c

#include <stdio.h>
#include "bai_src.h"
#include "feedback.h"

void main()
{

FILE *ifp, *ofp;
char str[256];
int status;
long obs = 0;
double dummy;
double True_y1, Est_y1;
double True_y2, Est_y2;
double x1;
double x2;

if (Init_feedback(true) == ERR_MEM) {
printf("ERROR: Memory allocation; could not initialize network\n");
exit(1);

}

ofp = fopen("user.est", "w");
fprintf(ofp, "Obs\tTrue_y1\tModel_y1\tErr_y1\tTrue_y2\tModel_y2\tErr_y2\n");
ifp = fopen("feedback.eva", "r");
fgets(str, 256, ifp);

while (true) {
if (fscanf(ifp, "format", inputs, outputs, dummys) != count)

break;

status = Inter_feedback(&Est_y1, &Est_y2, x1, x2, True_y1, True_y2);
if (status == INIT_NET)

fprintf(ofp,"Initializing network with observation %ld\n", obs++);
else

fprintf(ofp, "%ld\t%g\t%g\t%g\t%g\t%g\t%g\n", obs++, True_y1, Est_y1, True_y1-Est_y1, True_y2,
      Est_y2, True_y2-Est_y2);

if (status == WARN_IN)
fprintf(ofp,"Warning: Network input limited to the network training range\n");

if (status == WARN_OUT)
fprintf(ofp,"Warning: Network output limited to the network training range\n");

}
Close_feedback();
fclose(ofp);
fclose(ifp);

}
-------------------------------------------------------------------------------*/

#ifndef __feedback__
#define __feedback__

int Init_feedback(bool init_with_data);
/* Allocates memory and initializes variables.  Call this before interrogating the network. */
/* Set init_with_data = true to initialize the network from first observations. */
/* Set init_with_data = false to initialize with zeroes. */
/* Function returns OK or ERR_MEM. */

int Inter_feedback(double *Est_y1, double *Est_y2, double x1, double x2, double y1, double y2);
/* Interrogates the network such that inputs: x1, x2, y1, y2, */
/* propagate through the network producing new output(s): Est_y1, Est_y2, */
/* Function returns OK, INIT_NET, WARN_IN, or WARN_OUT. */

void Close_feedback();
/* Frees memory.  Call this once finished interrogating network. */

#endif

Figure 5.3: Example Header File (*.h)
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FILES CREATED DURING TRAINING AND EVALUATION

When evaluating or training, GNOSIS generates a statistics file (*.sts)  and an estimation
file (*.est).   Keep in mind that GNOSIS automatically evaluates the network on the
training data.  However, to determine the robustness of the model, reevaluate the network on
data that GNOSIS has not seen in training .  

Statistics File (*.sts  file)
The statistics file provides various measures from the training or evaluation run to assess the
performance of the network.  The statistics file is different for estimation problems than for
classification problems; an estimation statistics file is shown in Figure 5.4.  Weighted standard
deviation and mean are reported for each output, using the formulas:

mean = sum / total_weight

std2 =     (total_weight       ∗              sum_square        -        sum       ∗              sum)    
total_weight ∗  (total_weight - min_weight)

where total_weight = sum of all observation weights
min_weight = smallest positive observation weight
sum = sum of obs ∗  weight for each obs, where obs is one input or output column
sum_square = sum of obs ∗  obs ∗  weight for each obs

If observations weights are not used, total_weight becomes the number of observations,
min_weight becomes 1, and all weights are 1.0 in the sums.  Large ratios between the maximum
and minimum positive weights cause the standard deviation calculation to become inaccurate
and should be avoided.  To greatly deemphasize an observation, use a weight of 0.0 rather than
a very small number, keeping the max-to-min weight ratio within reasonable bounds.

For each estimation output, a column of error statistics are reported, including RMS and

normalized RMS error, mean and mean absolute error, standard deviation and the R2 statistic.
The error statistics are computable from the errors listed in the estimation file and use
observation weights if available.  RMS Error is the root-mean-square of the error between the
true and modeled outputs.   RMS Error is in units of the data, while Norm RMS Error is
normalized by dividing RMS Error by the standard deviation of the database outputs.  The
mean of all errors and mean of all error magnitudes is also reported.  The error standard
deviation is the root of the difference between MSE and the square of mean error, in units of the

data.  The R2 statistic is the percent of the output variance accounted for by the model, and is
computed by dividing the difference between output and error variance by output variance.  A

perfect model would have an R2 statistic of nearly 1.0.

Finally, the counts of all non-zero parameters in the hidden layers related to each output are
reported.  If nodes are shared between outputs, the parameter counts for all outputs may sum to
more than the actual parameters in the hidden layers.  The observation counts show the number
of observations used to initialize the network, vs used for evaluation. The initialization count
is zero unless Init_Network_With_Database  was selected in the NDF or GSF for a network
with time delays.  The evaluation count is used for all of the mean error statistics described
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above.  The sum of the initialization and evaluation counts equals the total number of
observations in the database.

Output Statistics: y1 y2
  Mean: 2.192485409 0.1271482853
  Std Dev: 5.621964079 3.453536992

Error Statistics: y1 y2
  RMS: 0.001032932955  0.04596445844
  Norm RMS: 0.0001837316888 0.01330938645
  Mean: 4.9525142e-05 7.284049404e-05
  Mean Abs: 0.0007910210404 0.03406389297
  Std Dev: 0.001031745002 0.04596440072
  R Squared: 0.9999999663 0.9998228607

Parameters: 27 27

Observations used for initialization: 1
Observations used for evaluation: 199

Figure 5.4: Estimation Statistics File (*.sts )

A classification statistics file has two classification tables plus two scoring statistics.  Figure
5.5 shows how the observations in the database are classified by the model. The bottom-right
corner value of the table shows the total number of observations in the database. Be sure tha t
the database had an adequate representation of each class.

One of the true Class 2 observations 
was modeled as a Class 3.

                    Model
               1      2      3    Total
         1    50      0      0      
True     2     0     49      1      
         3     0      1     49      
     Total                          150

50
50
50

Total number of 
observations for each 
true class in the data 
base.

50 50 50

Total number of observations in the 
database modeled in each class. 

Figure 5.5: Statistics File "Number of Observations Classified"

A percentage (strictly speaking, a per unit) table is also a part of the statistics file; see Figure
5.6. The numbers in the table show, on a per unit basis, how many times each true class was
modeled as a Class 1, Class 2, etc.
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                   Model
            1        2        3     Total
    1    1.000    0.000    0.000      50
    2    0.000    0.960               50
    3                      0.980      50
Total       51       48       51     150

The shaded region measures how well the 
model performed on the training database. 
The closer to 1, the better.

0.040
0.000

2% of the true Class 3 observations 
were modeled as a Class 1.

 0.020
True

Figure 5.6: Statistics File "Percentage Table"

Finally the Logistic-Loss score and percent misclassified are recorded.  The score is the sum of
the distribution function outputs divided by the number of observations, and generally decreases
as network accuracy improves.  The percent misclassified is the sum of off-diagonal elements in
the classification table, divided by the number of observations.  An example of an entire
statistics file for a classification problem  is shown in Figure 5.7.

Number of Observations Classified

Model
Species_1 Species_2 Species_3 Total

Species_1 7 0 0 7
True Species_2 0 9 0 9

Species_3 0 1 13 14
Total 7 10 13 30

Percentage Table

Model
Species_1 Species_2 Species_3 Total

Species_1 1.000 0.000 0.000 7
True Species_2 0.000 1.000 0.000 9

Species_3 0.000 0.071 0.929 14
Total 7 10 13 30

Logistic-Loss score: 2.482426695
Percent misclassified: 0.03333333333

Observations used for initialization: 0
Observations used for evaluation: 120

Figure 5.7: Classification Statistics File

Estimation File (*.est  file)
The estimation file, Figure 5.8, presents for each observation in the database the observation
number, the true outputs from the database, the outputs modeled by GNOSIS, and the
corresponding errors.  The top line provides labels for each column of data in the rest of the file:
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Obs refers to the observation index, numbered sequentially from the first observation not
used for network initialization.

True_<name> refers to the true values of an output as specified in the database file.
<name> is the label of this output as specified in the database file and NDF.

Model_<name> refers to the values obtained by the GNOSIS model for each observation.  
For classification problems, the values are probabilities.

Err_<name> refers to the error between the true and modeled data for each observation (err =
true – modeled).  

Data are separated by tabs, for processing by text editors, spreadsheet and graphing tools.

Obs True_y1 Model_y1 Err_y1 True_y2 Model_y2 Err_y2
1 1.62474 1.62411 0.000633096 0.501206 0.520212 -0.0190064
2 3.00158 2.9992 0.00238114 0.501587 0.519169 -0.0175824
3 4.12693 4.12436 0.00257039 0.009568 0.0032703 0.0062977
4 5.00026 4.99959 0.000666001 -1.00065 -1.02558 0.024929
5 5.62611 5.62492 0.00119184 -2.54055 -2.57067 0.0301137
6 5.50081 5.49984 0.000969839 -5.65855 -5.65105 -0.00749703
7 6.12454 6.1244 0.000143754 -6.00927 -5.98787 -0.0214039
8 4.00031 3.99956 0.000756331 -4.23643 -4.25268 0.0162501

Figure  5.8: Example Estimation File (*.est )



6
STRUCTURE LEARNING

INTRODUCTION

If you have no idea of the structure of the network needed to model a given phenomenon,
structure learning may be the best choice for network synthesis.  However, structure learning
only builds feedforward networks.  If feedbacks are needed to create an accurate model, then use
the options discussed in Chapter 4 to create a dynamic neural network.

This chapter gives a description of the ASPN-III structure learning option, beginning with a
simple tutorial.  If this option was not purchased with the GNOSIS software, the features
discussed below will not be available.

QUICK START STRUCTURE LEARNING TUTORIAL

Structure learning can be used to find the best feedforward (no feedback) model that transforms
observable (candidate input)  variables into estimated outputs.†  This tutorial session reviews
the general process of model creation using the structure learning capabilities of GNOSIS.  A
more detailed account of the structure learning features of GNOSIS is given following this
tutorial.  

A hypothetical "moon cannon" is used to generate a database for this tutorial:  Suppose that a
cannon on an airless moon is test-fired 50 times at various angles of muzzle elevation, called
gamma (degrees), and muzzle velocities, velocity  (m./sec.).  The corresponding distances tha t
the cannonball traveled, range  (m.), are recorded,†† as shown in Figure 6.1.  The goal is to
predict range  for any combination of gamma and velocity  in future firings.   To run this
tutorial,  go to the cannon directory provided with GNOSIS, where all the necessary files are
located.

                                                
† Time delays of observable quantities are learned indirectly if the user pre-computes the candidate delayed
variables and presents them to the GNOSIS ASPN-III option via the synthesis database (Chapter 3).  ASPN-
III then selects the most relevant time-delayed (i.e., leading) variables from those candidates.

†† In this case, computed from first principles.
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Database Creation and Manipulation
As in the previous examples, a database must be created which describes the problem to be
solved.  The data for the problem at hand are stored in the file cannon.dat .

obs range velocity gamma
1 28462 411.6 58.4
2 31737 475.9 24
. . . .
. . . .
. . . .
49 33755 498.6 66.9
50 45438 491.1 44.8

Figure 6.1: Original Moon Cannon Data (cannon.dat)

From the velocity and gamma information, one may readily compute the horizontal and
vertical components of the cannonball muzzle velocity vector, i.e., the initial conditions:

ẋ 
0
   =   V

0
 cos γ

0
ẏ 

0
   =   V

0
 sin γ

0

Placing ẋ 
0
 and ẏ 

0
 into the database in lieu of or in addition to V

0
 and γ

0
 is very advantageous.

It can be shown that the analytical solution for range , expressed in terms of V
0
 and γ

0
, involves

the function 
V

0
2

2g   sin 2 γ
0
.  (Maximum range  results when γ

0
 = 45 deg., and higher or lower

muzzle elevation angles reduce range .)  Thus, the solution in terms of V
0
 and γ

0
 requires

learning a trigonometric function, difficult to do accurately with only 40 or 50 data points.

Suppose we do not know about the trigonometry, and proceed to train a network using the
original database "willy nilly."  GNOSIS does the best it can.  If we suspect difficulty with use
of (V0, γ0) coordinates only, given that the database is small, we could model two functions, one
for range  when 0 ≤ γ

0
 ≤ 45° and the other for range  when 45° ≤ γ

0
 ≤ 90°.  But a good general

policy would be to present data to GNOSIS using more than one type of coordinate system (for
model outputs just as much as for inputs), and turn the matter over to GNOSIS for resolution.  Try
this with the "moon cannon" database.  Use (V

0
, γ

0
), (ẋ 

0
, ẏ 

0
), and (V

0
, γ

0
, ẋ 

0
, ẏ 

0
) input vectors

in three separate synthesis runs, comparing results.

As in the other tutorials, the database should be split randomly, with approximately 80% of
the observations going to the training database cannon.tra  and 20% going to the evaluation
database, cannon.eva .  Both training and evaluation databases have been provided.

Model Synthesis (Training)
Once the training database has been established, start network synthesis via structure
learning.  To begin training, enter the command

gnosis -d cannon.tra -t cannon.slf -b cannon

The file cannon.slf , shown in Figure 6.2, is the Structure Learning File (SLF) described in
detail later in this chapter.  It controls the execution of GNOSIS when run in structure learning
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mode.  Repeat the training process using different SLF settings to find the model best suited to
your needs.  For each run, be sure to note which modifier settings in the SLF were used to create
each result file.

Structure Learning File for GNOSIS.
Copyright 1998 by Barron Associates, Inc. All Rights Reserved.

------------------------------------------------------------------------------------
KEY_WORD ARGUMENTS |COMMENTS
------------------------------------------------------------------------------------
Inputs USE_VSTRING |USE_VSTRING, or enter input variables by name,

|ending with'|'
Outputs USE_VSTRING |USE_VSTRING, or enter output variables by name,

|ending with'|'
Vstring -yxx-- |Specify inputs/outputs: y, x, -, integer

|repeat count (only used if USE_VSTRING
|option entered for Inputs or Outputs)

Weights weight |Optional observation weight variable
------------------------------------------------------------------------------------
Normalize YES |Normalize inputs (YES/NO)
Unitize YES |Normalize/Unitize outputs (YES/NO)
------------------------------------------------------------------------------------
Pause_Between_Layers NO |Be prompted after completion of each layer

|to decide whether to continue building the
|structure (YES/NO)

Global_Optimization QUADRATIC |Optimize all parameters after learning the
|network structure (NONE/QUADRATIC/LOGISTIC)

------------------------------------------------------------------------------------
Use_DB_Vars_As_Node_Inputs  YES |Try database input variables as inputs to

|nodes of each hidden layer past the first
|hidden layer (YES/NO)

Sharing NO |Outputs use best nodes from other outputs
|(YES/NO)

Try_Whites NO |Try white nodes on each hidden layer
|(YES/NO)

Projection_Pursuit YES |Use Projection Pursuit (YES/NO)
Number_Of_L0_Elements 1 |Number of L0 nodes to keep for each hidden

|layer
Max_Number_Of_Layers 2 |Maximum number of hidden layers for the

|network
------------------------------------------------------------------------------------
Limit_Nodes ALL |Set which nodes to limit.  Nodes from input

|and output layers limited with database
|training values. (IO/ALL/NONE)

Limit_Range 1.0 |Percentage of full range (0.01 - 1.0) that
|node outputs  will be limited to. (only used
|f Limit_Nodes is ALL)

------------------------------------------------------------------------------------
Carving NO |Carve away unneeded parameters in nodes
Node_Type COMP |Specify polynomial structure type

|(ADD/MULT/COMP) ADD = additive,
|MULT = multilinear, COMP = complete,

Node_Degree 2 |Maximum allowable degree of polynomial term
Max_Number_Of_Inputs 2 |Maximum number of inputs to any node
------------------------------------------------------------------------------------
Nearest_Neighbor NO |Use nearest neighbor algorithm to find

|Sigma_P
Sigma_P 0.0007 |Specify Sigma_P for each output (only used

|if Nearest_Neighbor option is NO)
------------------------------------------------------------------------------------
Write_Pix_File YES |Write node connections diagram and node

|equations to .pix file
Write_Source_Code YES |Write source code to .c and .h files
------------------------------------------------------------------------------------

Figure  6.2: Sample Structure Learning File (cannon.slf)

While training on the moon cannon data, GNOSIS develops a general relationship tha t
forecasts range , when given new cases of gamma and velocity .  Modeling information is
displayed on the screen as execution proceeds; see Figure 6.3.  More information about the
messages displayed and files output by GNOSIS during network training is given at the end of
this chapter.
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***************************************************
# GNOSIS Version 3.0
# Copy #0001 licensed to Barron Associates, Inc.

# Copyright 1995-1998, Barron Associates, Inc.
# All rights reserved
# GNOSIS
      Optimizes network structure and/or optimizes
      parameters of neural networks.
***************************************************
# Cmdline: gnosis -d cannon.tra -t cannon.slf -b cannon
# GNOSIS: Sizing input database 'cannon.tra'...
# Database: 6 variables, 40 observations, 1 block(s)
# GNOSIS: Scanning structure learning file 'cannon.slf'...
# GNOSIS: Initializing the network structure...
# GNOSIS: Network input variable(s): Velocity Gamma
# GNOSIS: Network output variable(s): Range
# GNOSIS: Reading input database...
# GNOSIS: Beginning Network Synthesis algorithm...
# SL: ---- Layer 1 ------------
# SL: Out = Range, N = 0
# SL: Node =   3, rPSE = 0.0664963, RMS = 0.0664952
# SL: Out = Range, N = 1
# SL: Node =   3
# SL: ---- Layer 2 ------------
# SL: Out = Range, N = 0
# SL: Node =   3, rPSE = 0.0345262, RMS = 0.0345219
# GNOSIS: Layer limit reached.  2 hidden layer(s) successfully made
# GNOSIS: Optimizing the parameters for Range...
# ILS: Iteration  0, Lambda 0.0e+00, rScore 0.0405441
# ILS: Iteration  1, Lambda 1.0e-01, rScore 0.0405441
# ILS: Iteration  2, Lambda 1.0e-02, rScore 0.028184
# ILS: Iteration  3, Lambda 1.0e-03, rScore 0.0252902
# ILS: Iteration  4, Lambda 1.0e-04, rScore 0.0240246
# ILS: Iteration  5, Lambda 1.0e-03, rScore 0.0240246
# ILS: Iteration  6, Lambda 1.0e-04, rScore 0.0227805
# ILS: Iteration  7, Lambda 1.0e-05, rScore 0.0225097
# ILS: Iteration  8, Lambda 1.0e-04, rScore 0.0225097
# ILS: Iteration  9, Lambda 1.0e-05, rScore 0.0219331
# ILS: Iteration 10, Lambda 1.0e-06, rScore 0.0217879
# ILS: Iteration 11, Lambda 1.0e-07, rScore 0.0216935
# ILS: Iteration 12, Lambda 1.0e-08, rScore 0.0216918
# ILS: Iteration 13, Lambda 1.0e-07, rScore 0.0216918
# ILS: Iteration 14, Lambda 1.0e-06, rScore 0.0216918
# ILS: Iteration 15, Lambda 1.0e-05, rScore 0.0216918
# ILS: Iteration 16, Lambda 1.0e-04, rScore 0.0216918
# ILS: Iteration 17, Lambda 1.0e-03, rScore 0.0216918
# ILS: Iteration 18, Lambda 1.0e-02, rScore 0.0216918
# ILS: Iteration 19, Lambda 1.0e-01, rScore 0.0216918
# ILS: Iteration 20, Lambda 1.0e+00, rScore 0.0216918
# ILS: Iteration 21, Lambda 1.0e+01, rScore 0.0216918
# ILS: Iteration 22, Lambda 1.0e+02, rScore 0.0216918
# ILS: Iteration 23, Lambda 1.0e+03, rScore 0.0216918
# ILS: Iteration 24, Lambda 1.0e+04, rScore 0.0216918
# ILS: Iteration 25, Lambda 1.0e+05, rScore 0.0216918
# ILS: Normalized score change below tolerance.
# GNOSIS: Evaluating the network...
# GNOSIS: Writing estimation file 'cannon.est'...
# GNOSIS: Writing statistics file 'cannon.sts'...
# GNOSIS: RMS Error: Range = 70.3518
# GNOSIS: Norm RMS Error: Range = 0.00921419
# GNOSIS: R Squared: Range = 0.999915
# GNOSIS: Writing network description file 'cannon.mdl'...
# GNOSIS: Writing graphic representation of network to 'cannon.pix'...
# GNOSIS: Writing source code to 'cannon.c'...
# GNOSIS: Writing header code to 'cannon.h'...
# GNOSIS: DONE @2.75 sec

Figure 6.3: Display of Structure Learning Run

Model Evaluation

To evaluate the model generated during the training exercise above, enter the following
command:

gnosis -d cannon.eva -e cannon.mdl -b cannon_eval

The files created during evaluation are described in Chapter 5.  
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STRUCTURE LEARNING FILE MODIFIER DESCRIPTIONS

The structure learning capabilities of GNOSIS are controlled entirely by a Structure Learning
File (SLF).  An example of a SLF with the proper syntax is shown in Figure 6.2; "learning" must
appear in line 1.  The SLF follows the same basic format as the GSF.  Each structure learning
field is explained in detail below, in the order they appear in the structure learning file.

Inputs and  Outputs [USE_VSTRING or  strings ] |

Vstring [x, y, - codes ]

Weights [ string ]

Normalize [YES/NO]

Unitize [YES/NO]
These fields are the same as for a GSF; see Chapter 4.

Pause_Between_Layers [YES/NO]
Enable this flag to use an interactive approach to network synthesis.  The program
stops at the end of each layer and asks if the next layer should be built.  Otherwise
network synthesis continues until there is no longer improvement or the maximum
number of layers has been reached.

Global_Optimization [NONE/QUADRATIC/LOGISTIC]
Global optimization of all the parameters is available once the network structure is
complete.  GNOSIS  uses the same ILS gradient-based search employed for GSF and
NDF optimization.  Select NONE to skip global optimization and retain the parameters
developed during structure learning.  Select QUADRATIC to use the squared-error loss
function during global optimization, using the parameters from structure learning as
initial values.  Select LOGISTIC to use the logistic-loss function during global
optimization.  GNOSIS   first resets hidden layer parameters to small random values,
turns off unitization, resets output layer parameters for pass-through, and turns off node
limiting for the output layer.

Use_DB_Vars_As_Node_Inputs [YES/NO]
Enable this flag to use input variables from the data file as candidate inputs to
elements on all hidden layers.  Otherwise data file inputs are provided only to the
first layer.

Sharing [YES/NO]
Enable this flag to let the subnetworks in a multi-output model share their elements.
The candidate inputs to a given layer of a particular network output will include the
element outputs of the previous layer for all the other network outputs as well.  I f
Sharing is disabled, an element found for one of the outputs is not used for any of the
other outputs.  The resulting network is a collection of no (number of outputs)
independent subnetworks.  

Try_Whites [YES/NO]
Enable this flag  to try "white" elements.  A white element is a linear combination
element that consists of the weighted sum of all its inputs:
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y   =   θ0   +    ∑
i=1

N

 θi  xi 

where y is the element output, θi  are the element parameters, and xi are the element
inputs.

Projection_Pursuit [YES/NO]
Projection pursuit finds candidate elements on each layer that will work well in linear
combination with each other when the next layer is synthesized.  To do this, a
backfitting algorithm similar to the one used in projection pursuit regression  is used.
[Friedman and Tukey, 1974; Friedman and Stuetzle, 1981; Friedman, 1988].  Backfitting
significantly increases execution time since the algorithm boosts the number of tr ial
elements.  However, projection pursuit often improves the network score.

First, GNOSIS attempts to find new elements that model the output all by themselves.
These elements, called L0 or non-projection pursuit elements, are created whether
Projection_Pursuit  is enabled or not.  If Projection_Pursuit  is enabled,
GNOSIS then attempts to find an L1 element with an output which, when added
linearly to that of the best L0 element, will model the output well.  Next, an L2 element
is found that will work well when linearly combined with the best L0 and the best L1
elements.  When the next layer is built, the L0, L1, and L2 elements will all be
available.

Number_of_L0_Elements [ integer >= 1 ]
Enter the number of non-projection-pursuit elements to save on a given layer for a given
output.  If there are three outputs and Number_of_L0_Elements  is four, 12 elements
are saved on each layer, assuming Projection_Pursuit  is disabled.

Max_Number_of_Layers [ integer >= 1 ]
Enter the maximum number of hidden layers to build during network synthesis.

Limit_Nodes [IO/ALL/NONE]

Limit_Range [ decimal ]
These fields are the same as for a GSF; see Chapter 4.

Carving [YES/NO]
Enable this flag to eliminate (i.e., carve away) in each element the unneeded
parameters and the basis functions they introduce.  When determining which
parameter to discard next, GNOSIS uses a "backward greedy algorithm" (see below)
and the PSE as a stopping criterion.  

A trial carve consists of:
1. removing a parameter from the element,
2. refitting the element (i.e., optimizing remaining parameters),
3. determining a score (with PSE), and
4. replacing the parameter (if determined to be needed).
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First, GNOSIS finds the best parameter to remove with N trials, where N is the
number of original parameters in the element.  If the PSE allows it, the parameter is
removed and GNOSIS looks for the next best parameter to remove (with N–1 trials),
and so on for a maximum total of N + (N–1) + (N–2)… trials.  This is known as
"backward greedy" because once parameters are removed they are no longer considered
by GNOSIS.  A non-greedy algorithm would consider all combinations of parameters
that could be removed before making the decision (with PSE) to remove anything.  The
number of trials that would be required for a non-greedy algorithm would be

number of trials   =   
∏

i=1
N–1     Ni    

where   

  Ni        =    
N !

i!  (N – i) ! 

For example, if an element had five original parameters, the greedy algorithm
executed by GNOSIS would perform a maximum of 14 trials, whereas a non-greedy
algorithm would require a maximum of 2500.  The disparity between the two
algorithms dramatically increases as the number of parameters increases.

Node_Type [ADD/MULT/COMP]

Node_Degree [ integer >= 0 ]
These fields are the same as for a GSF, except the CUSTOM option is not available; see
Chapter 4.

Max_Number_Of_Inputs [ integer >= 1 ]
This modifier specifies the maximum number of inputs to any polynomial element in the
network.  For example, if Max_Number_Of_Inputs  is 4, GNOSIS will try 1, 2, 3, and 4
input nodes during network synthesis.

Nearest_Neighbor [YES/NO]
The complexity penalty (the second term in the predicted squared error, PSE, criterion)
is computed as

2K
N    σ2

p 

where K is the number of non-zero parameters in the network, N is the number of

observations in the database, and σ2
p  is the prior estimate of the true error variance

that does not depend on the network model being considered.  σ2
p  can be calculated a

number of different ways.

Enable this flag to use a nearest-neighbor algorithm to set the values of σp, the prior
estimate of the error standard deviation (see Sigma_P  below).  Usually the nearest-
neighbor estimate is very conservative, as the estimation method of examining only
local data "neighborhoods" is much less sophisticated than the global modeling
performed by GNOSIS.  Still, results from the simpler and quite different approach can
provide a good starting point.  Further, σp values may be reduced as modeling iterations
reveal more about the tractability of the problem being addressed.  
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Sigma_P [ decimals ]
If Nearest_Neighbor  is disabled, enter the normalized σpto use for each output.
Otherwise ignore this field.  Usually σp is set between 0.0 and 1.0 for the percentage of
standard deviation of each database output not accounted for by the model.  Smaller
values cause a closer model fit.  For cases with very large N, σp can be set above 1.0 to
increase the complexity penalty.

Write_Pix_File [YES/NO]

Write_Source_Code [YES/NO]
These fields are the same as for a GSF; see Chapter 4.

STRUCTURE-LEARNING OUTPUT FILES

GNOSIS creates a number of files once network synthesis is complete, the same files described
in Chapter 5.  The statistics file has some additional entries after structure learning, as shown
in Figure 6.4.  Normalized σp  from the SLF or computed by the nearest-neighbor algorithm is
reported, as well as σp  in units of the data.  σp  is the prior estimate of the standard deviation
of each database output not accounted for by the model, and is used to develop complexity
penalties (CP).  The complexity penalty for each normalized and unitized σp  is computed:

CP = 
2K
N    σ2

p 

where K is the parameter count and N is the evaluation observation count.  Finally, the root of
the Predicted Squared Error gives an estimate of the model's performance on unseen data, and
for each output is computed:

rPSE = RMS2 + CP 

Output Statistics: Range
  Mean: 33010
  Std Dev: 7635.153853

Error Statistics: Range
  RMS: 70.35175568
  Norm RMS: 0.00921418966
  Mean: 0.1330276522
  Mean Abs: 54.64694694
  Std Dev: 70.35162991
  R Squared: 0.999915099

Parameters: 12

SL Statistics: Range
  Norm SigmaP: 0.0007
  Norm CP: 2.94e-07
  Norm rPSE: 0.009230129527
  SigmaP: 5.344607697
  CP: 17.13889886
  rPSE: 70.47345902

Observations used for initialization: 0
Observations used for evaluation: 40

Figure 6.4: Structure Learning Statistics File (cannon.sts )
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STRUCTURE-LEARNING MESSAGES

While GNOSIS is performing structure learning, information is printed to the screen pertaining
to the current status of network synthesis.  As seen in the Figure 6.3, GNOSIS displays the
number of trial elements attempted thus far for each layer, each named output, and each
projection pursuit number N.  If N = 0, L0 elements are currently being tried, if N = 1, L1
elements, and so on.   For each trial, the best square root of predicted squared error and best root
of mean squared error found so far are displayed.   As the structure develops, RMS tends to get
smaller as the fit improves.  Since PSE combines RMS and the complexity penalty, it increases
as parameters are added, and decreases as RMS is reduced.  Structure development stops when
there is no improvement in PSE.  If no rPSE or RMS is displayed for a trial, all candidate
elements were eliminated before fitting by special heuristics designed to remove redundant
nodes.

After at least one element has been found for each output,  the structure learning search can be
terminated by entering Control C.  Before that time, Control C is ignored. Once all the
candidate elements are exhausted or the search is terminated, global optimization begins ( i f
selected in the Structure Learning File).  GNOSIS displays ILS iteration messages on the screen,
as described in Chapter 5.

TIPS FOR IMPROVING MODEL PERFORMANCE

The quality of a generated model is strongly dependent upon the data that are used to train the
model.  Following the guidelines outlined in Chapter 3 can dramatically improve model
performance.  Determining the number of input variables to include in the database can also
help GNOSIS find better solutions.  However, this can be an evolving process.  On the first
GNOSIS training run, use just a few of the candidate input variables in a trial synthesis.  This
will establish quickly if the synthesis protocol is being followed correctly.  Next, include a l l
the available candidate input variables in a subset of the training database.  If this constitutes
a large number of input variables, GNOSIS will take relatively more time.  GNOSIS wil l
examine each candidate input variable in the context of its relevance to the model, and
determine which of the candidates have significant influence on the output variables.  Those
input variables that do not significantly influence the output variables will not appear in the
GNOSIS model.  The second synthesis will therefore show which candidate input variables
are valuable.  For successive runs, reduce the number of candidate inputs and increase the number
of training exemplars.
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A
SERVICES AND

SUPPORT

Thank you for purchasing GNOSIS.   As owner of a GNOSIS usage license, for a period of one
year you:

• will be notified automatically regarding upgrades and enhancements to GNOSIS,
and

• are entitled to program maintenance and technical support up to the ceiling
established by your purchase agreement.

This one-year maintenance is renewable annually for a nominal fee.

To help us keep our records current, please notify Barron Associates, Inc. of any name or address
changes.

It is emphasized that you should create a backup copy of the software.  Store it in a safe, cool
place.  The backup and original copies should be made accessible only to your authorized
personnel.

Barron Associates seeks always to improve its service and support. If you find that a feature or
technique needs further clarification in this Users' Manual, or something has been omitted from
the index, please let us know.  In addition, we would like to hear your comments or suggestions
concerning the GNOSIS software.

TECHNICAL SUPPORT

If you are having difficulties with GNOSIS and cannot find the help you need in this manual,
please contact us by:

• email - support is available by sending an email to:
bird@bainet.com
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• telephone – support is available at (804) 973-1215, Monday through Friday, 9:00
a.m. to 5:00 p.m. (U.S.A. Eastern Time).  It will be helpful if you are seated at your
computer when you make your call.

• FAX – support is available at (804) 973-4686, Monday through Friday, 9:00 a.m. to
5:00 p.m. (U.S.A. Eastern Time).

• mail – support is available by writing to
Barron Associates, Inc.
Jordan Building
1160 Pepsi Place, Suite 300
Charlottesville, VA  22901-0807
U.S.A.

Please include your name, address, and telephone number.

We will be able to help you more efficiently if you can provide the following information when
contacting us:

Computer Model,
Network Environment, and
Problem/Question.



B
DEVELOPMENT OF

ARTIFICIAL NEURAL
NETWORKS

Serious study of artificial neural networks began with the work of McCulloch and Pitts
[1943],† who put forward a mathematical representation, based upon boolean algebra, for
the gross behavior of neural networks.  Hebb [1949] introduced neural network models in
which the cells included delays and a refractory period, and the networks of these cells
incorporated feedback connections producing reverberating chains.  Lee [1952] proposed
generalized logic learning elements for automata; selective reinforcement of total network
behavior conditioned the appropriate boolean functions in each of the network elements.
Farley and Clark [1954] suggested use of linear elements with output thresholding.  Gabor
[1954] proposed a filter that could learn with supervision.  

Kolmogorov [1957] proved an important theorem on network representation of continuous
functions.  Rosenblatt [1957] drew a vital connection between studies of neural networks and
of statistical inference; he showed that a network of the Farley and Clark elements can
find a data-separating hyperplane if one exists.  Rosenblatt [1958] also assembled
hardware for a transformation network ("Perceptron"), using it to recognize patterns.  Gabor
et al. [1959] described results obtained with a "universal non-linear filter" which
optimized itself by a learning process.  The Gabor filter could compute "...94 terms of a
polynomial, each term containing products and powers of the input quantities, with
adjustable coefficients, and...form their sum".  He showed that "...the most general
functional of the past of a band-limited time function can be put in the form...of a
polynomial of the samples".  Widrow [1962] employed stochastic approximation to
estimate sequentially the weights in a network of the Farley and Clark elements.

In 1963, R. L. Barron, Gilstrap, et al. introduced analytic nonlinear neural networks using
polynomial nodal elements suggested by the earlier work of their colleague, Lee [1955, 1959,
1960].  It was demonstrated that these elements and networks could perform boolean logic,

                                                
† References are listed in Section 7.



GNOSIS Users' Manual

B-2

estimate values of unknown variables, perform high-order predictions, and discriminate
between patterns.  Pre-structured feedforward networks were used, with the coefficients
adjusted simultaneously using a statistical measure of performance on the synthesis
database.  The first application of the Barron/Gilstrap polynomial networks was for
prediction of trajectories of atmosphere re-entry vehicles.  It was demonstrated tha t
polynomial networks are robust and competitive in accuracy with serial integration of
equations of motion.  Moreover, the polynomial networks were shown to be many orders of
magnitude faster in solution speed [Snyder, et al. 1964].

With the propensity of large fixed networks to result in overfitted estimates, attention was
turned in the 1970s to synthesis of networks for which the structure is a d a p t i v e l y
determined from the data .  Such network strategies were introduced by Ivakhnenko [1968,
1971] in Ukraine.  Ivakhnenko used a one-element-at-a-time synthesis strategy and a
statistical cross-validation procedure (with multiple data subsets) to select between
candidate elements and discourage overfitting of the synthesis data.  Akaike [1970, 1972] in
Japan introduced information-theoretic, constrained-complexity statistical modeling
criteria, opening the door for realization of rigorously optimized network structures and
weights.   Prior work in the United States and development and use of information-
theoretic synthesis criteria and the Ivakhnenko strategy are discussed in R.L. Barron et a l .
[1984].

The types of nodal elements typically used in adaptively synthesized polynomial
networks are second- and third-degree polynomial or multinomial functions in one, two, or
three input variables.  At the element level, the number of inputs is restricted to avoid a
combinatorial explosion in the number of element possibilities that must be examined by
the synthesis algorithm.  The number of inputs to the network is limited only by the number
of elements therein.

The basic Ivakhnenko strategy for feedforward estimation network structure learning
(described here using elements involving two variables) is depicted in Figure B.1.  On the
first layer of the polynomial network, all possible pairs of inputs are considered and the
best subset k1 is temporarily saved.  The value ki is a program parameter that dictates the

number of elements to save for layer i of the network.  On the succeeding layers, all possible
pairs of the intermediate variables z from the preceding layer(s) are considered and the
best k2 (k3, etc.) are saved.  When additional layers fail to provide more improvement, the
network synthesis stops at the last layer that did produce improvement.  The final network
consists only of the elements driving the final (output) element (or elements, if multiple
outputs are needed.)
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Figure B.1: An Adaptive Model Synthesis Strategy for
Feedforward Estimation Networks

In the original Ivakhnenko algorithm, the parameters within each element were
estimated so as to minimize on a training set of observations the sum of squared errors of the
fit of the element to the final desired output.  Cross-validation on a separate testing set
was used to rank and select the best elements on each layer and to select the number of
layers.  (Ivakhnenko called this use of multiple data subsets during network synthesis and
validation the group method of data handling (GMDH).)  The need to construct complete
quadratic polynomials for every pair of variables forced early implementations of the
algorithm to restrict the number of temporarily saved intermediate variables to be
typically not more than 16.

A.R. Barron [1981, 1984, 1985] drew the connection between the subjects of neural network
synthesis and statistical inference.  Drawing upon the work of Akaike, Rissanen [1978], and
Mallows [1973], he formalized the predicted squared error (PSE) and minimum description
length (MDL) synthesis criteria and built synthesis algorithms upon them. These
algorithms incorporated the PSE criterion at every phase of element design and
element/network selection, including the "pruning" of terms in the individual elements to
minimize their complexity.  He formulated a method whereby candidate pairs were
prescreened, permitting more elements to be considered on each layer.  This also permitted
use of more complicated elements, i.e., third-degree polynomials, with terms selected by
the PSE criterion.  The saved elements from all preceding layers were treated as candidate
inputs to a given layer.  Moreover, some one- and three-input elements were considered on
each layer.  The PNETTR synthesis algorithm by A.R. Barron [1979] was extensively
applied to problems in nondestructive evaluation of materials, modeling of material
characteristics, flight guidance and control, target recognition, intrusion detection systems,
and scene classification; see R.L. Barron et al. [1984] and the references cited there.

The Barron Associates, Inc. (BAI) ASPN-II network synthesis algorithm by Elder,  Cellucci,
et al. [1990] permitted choice between the predicted squared error and minimum description
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length criteria.  This algorithm had more user flexibility in the specification of one-, two-,
or three-input elements and in candidate forms of the polynomial elements.  Moreover, a t
each layer a new element was considered that was a linear combination of all elements on
the preceding layer.

The field of artificial neural networks continues to draw closer to statistical inference
[Barron and Barron, 1988].  The work of Friedman and Tukey ["Projection Pursuit," 1974],
Friedman ["Multivariable Adaptive Regression Splines," 1988] and others has been
influential.  High-order (high-degree) neural networks are being more widely studied
[Giles and Maxwell, 1988].  The theoretical and estimation bounds on artificial neural
networks have been derived [A.R. Barron, 1993, 1994].  ASPN-IIc and ASPN-III by BAI
incorporate projection pursuit and other refinements in the ASPN structure-learning
paradigm.  BAI was first to apply the logistic-loss function, used extensively in the
statistical community, to the construction of nonlinear classificatory neural networks.  The
first commercial product to have this feature was BAI's CLASS software [Anon., 1992].

Current work in artificial neural networks is placing increasing emphasis upon use of time
delays and feedback (recurrent) connections that impart dynamic (hebbian) behavior
[Ward, Parker, and Barron, 1992].  The BAI GNOSIS and predecessor IMP [1995] software
are synthesis and evaluation tools that provide complete flexibility in the insertion of
time delays and feedbacks within and external to artificial neural networks.



C
TECHNICAL/

MATHEMATICAL
DESCRIPTION†

INTRODUCTION

GNOSIS utilizes a generalized neural network architecture and learning algorithm that is
capable of implementing a wide variety of neural and statistical function estimation
paradigms, including basis functions, splines, polynomial neural networks, multi-layer
perceptrons, recurrent networks, and others.  The fundamental building block of GNOSIS is a
generic nodal element that can perform a number of user-defined linear and nonlinear
transformations.  These nodal elements are combined into networks using an information-
theoretic approach that reduces excess network complexity.  An iterative Gauss-Newton
training algorithm is used for network synthesis.  In this Appendix it is shown how this
algorithm is used to optimize the network for a variety of loss functions.  The intent is to
provide insight into both neural and statistical modeling by exploring the relationships
between existing paradigms and by providing a technique that allows the best aspects of
existing paradigms (including the Barron Associates, Inc. algorithms ASPN-II, ASPN-IIc,
CLASS, Dyn3, and IMP) to be combined into novel function estimation strategies.

                                                
† The material in this paper was originally presented in [Ward, 1994].  (References are listed in Section 7.)
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THE GNOSIS ARCHITECTURE

GNOSIS, like other tools for synthesis of artificial neural networks (ANNs), is a parallel,
distributed information processing structure consisting of multiple, interconnected nodal
elements.  Figure C.1 shows a single fully-interconnected GNOSIS layer.  Note the feedback
connections in the generalized structure;  this allows the network to be connected in either a
feedforward or recurrent configuration.
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Figure C.1: A GNOSIS Layer

Each layer of GNOSIS is comprised of fundamental building blocks called nodes, elements, or
nodal elements;  a GNOSIS nodal element is shown in Figure C.2.  This generalized nodal
element is comprised of three important parts:  (1) an algebraic or other series expansion,  (2) a
fixed linear or non-linear post-transformation function, h(·),  and, (3) shift registers or delay
banks to allow the series expansion to have access to prior input values.  These shift-registers,
along with the recurrent interconnections, provide the network with memory.  The first two
nodal element components are discussed in more detail below.
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*  tapped delay line (shift register)

∆t

∆t

*

∆ t

∆ t

*

xn (t)

Generalized Network Nodal Element

Linear or
Nonlinear

Post-
Transformation

θ0 + Σ θjΦK
j j

D

h(t )z(t)  

h(• )

Figure C.2: Generalized Network Nodal Element

Basis Functions and Series Expansions
The series expansion of Figure C.2 is of the form
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z(    x    ,    θ   )   =   ∑
j=0

J
  θj  Φ (     k     j ,      x    ) (1)

where    θ    is the vector of element coefficients, J is the total number of non-constant terms in the
expansion, and      k     j is a vector of integers.  A bias term is ensured by requiring that Φ(0,     x    ) = 1.  The

series expansion within a neural network element has the same form as traditional series-
expansion techniques; however, with network function estimation, it is desirable that the total
number of terms in any given element be kept as small as possible.  This point will be elaborated
on shortly.

The inclusion of      k     j, sometimes called the set of indices or multi-indices, allows the series

expansion to handle both univariate and multivariate cases. For the multivariate case, each
Φ(     k     j,    x    ) is a product of functions of scalars.       k     j is usually taken to be a vector of integers with
each element of      k     j corresponding to one of the variables in the     x     vector.  Using this notation, the

jth term in the series expansion may be written as:

Φ (     k     j,     x    ) = Φ (kj1, x1)  · Φ (kj2, x2)  · ...  ·  Φ (kjD, xD) (2)

where D is the total number of inputs to the series expansion (i.e., the total number of outputs of
the tapped delay lines).

The notation introduced above (and thus the nodal element) is sufficiently general to
implement a variety of basis functions…

Polynomial:

Φ(k, x) = xk (3)

Spline:

Φ(kjd, x) =  


 xki if k < r (x–α jd) r

+
if ki≥ r  (4)

Orthonormal Wavelet:

Φ(kjd, x) = 


 2–k /2 Ψ(2–k x – α jd) if k > 0

1 if k = 0
 (5)

Trigonometric:

Φ(k, x) =



 sin





2π 

k+1
2L  x if k is odd

cos




2π 

k
2L x if k is even 

 (6)
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For the polynomial basis function (3), the      k        j    vector is used to determine the powers to which

each of the input variables is raised in the jth term of the expansion.  The same is true for the
spline basis function (4).  

Note that in both the spline and the wavelet cases an additional set of multi-indices, αjd, must
be specified.  The parameter α jd in (4) and (5) is sometimes called the "knot" and is the value

about which the approximation takes place.  In the orthonormal wavelet basis function, Ψ(·) is
termed the "mother wavelet" [Daubechies, 1992].  GNOSIS v2.6 uses only polynomial basis
functions;  however, future versions may offer additional choices.

From (1) - (6) it can be seen that the core expansion may be fully specified  by (1) selecting a
univariate basis function and (2) providing a J × D matrix,       K      , where each row of       K       is the vector
of integers      k     j as defined above.  The following  example illustrates this point.

A Full-Double polynomial nodal element is shown below.

Σ

θ0

θ6

θ8

θ1

θ5

θ4

θ7

θ9

θ2

θ3

3

2

X

3

X

X

1

x1

x2

z

Two-Input Full Double

n Exponentiation to the power n

Cross Product

Multiplication by a constantθ

X

2

Figure C.3: Full-Double Polynomial Nodal Element

This nodal element has no input delays and no post-transformation h(·); therefore, it is
completely specified by the following series expansion:

z(•) = θ0 + θ1x1  +  θ2x2  +  θ3x1
2  +   θ4x2

2  +  θ5x1x2 +  θ6x1
3  +  θ7x2

3

+  θ8x1
2x2  +  θ9x1x2

2 (7)

Using the polynomial basis function (3), the J × D matrix       K       that results in the transformation,
(7), is
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      K          =    













  
0 0
1 0
0 1
2 0
0 2
1 1
3 0
0 3
2 1
1 2
  

 (8)

Note that the θ0 bias term is handled by a row of zeroes in the       K       matrix.  

Although the generalized nodal element is capable of implementing many commonly used
series-expansion basis functions, neural network function estimation is fundamentally different
from traditional series and nonparametric estimation techniques in the following ways:

• Each network element implements only a limited subset of the terms that would make
up a complete series expansion; thus element complexity is kept low.

• Network interconnections allow a set of relatively simple network elements to be
combined so that they can implement complex transformations; thus the network
connections do a great deal of the "work" involved in the estimation problem.

• As the number of inputs to the function increases, the error bounds for network
estimation can be shown to be more favorable than that of traditional function
estimation techniques [A.R. Barron, 1991].

Network complexity is determined by:

1) Number of Inputs (D):   Although the number of inputs to the network is largely
determined by the application, it is possible to limit the number of inputs to individual
elements, resulting in a less than fully interconnected network.  The number of inputs
corresponds to the number of columns in       K      .

2) Maximum Degree (R):  The degree, R, of any given basis function is the maximum value
of the sum of the elements in a row of       K      .  For polynomial basis functions, the degree of a
given term corresponds to the sum of the powers of the variables in the term.

3) Maximum Coordinate Degree (P):  The coordinate degree of any given series expansion
is the maximum value of any integer in       K      .  For a polynomial basis function, this
corresponds to limiting the power to which any given input may be raised.

4) Maximum Interaction Order (Q):  In multivariate function estimation, the interaction
order, Q, corresponds to the maximum number of different input variables that may
appear at the same time in a given term and is equal to the number of non-zero elements
in a row of       K      .
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5) Expansion Density:  Even after the number of inputs, degree, coordinate degree, and
interaction order for a given series expansion are limited, one may choose to remove
some terms to obtain a sparse or low-density expansion.  This is often accomplished v ia
carving or optimal brain damage [Elder, 1991; Hush, 1993].

Notice that, in all cases, the complexity of a generalized network element may be kept low by
performing operations on the       K       matrix.

Post-Transformations
In many neural network paradigms, the nonlinearities enter directly through the series
expansion (e.g. Polynomial Neural Networks [Ward, 1992], Higher-Order Networks [Ward,
1993]).  However, in many other common paradigms, the core transformation has few or no
nonlinearities (e.g. MLPs, RBFs), and element nonlinearities are added using post processing.
The linear or nonlinear fixed post-transformation, h(z), of Figure C.2 provides a means for
incorporating these types of nonlinearities and allows the generalized nodal element
specification to implement most nodal transformations currently in use.  Figure C.4 shows the
role of the post-transformation in the popular sigmoidal element used in multi-layer perceptron
(MLP) neural networks.

AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA

Σ

θ0

θ1

θn

x1

xn

1

h(z) = 1+ e- β z

Perceptron Nodal Element

1

Figure C.4: An MLP Network Element

The element shown in Figure C.4 also has no time delays and implements a series expansion of
the form

z(•) = θ0   +   ∑
j=1

D
  θj xj (9)

Following the same method outlined above, this series expansion can be represented by choosing
the polynomial basis function of (3) and letting       K       be a D × D identity matrix.  Because       K      
contains only first-order interactions and has a maximum power of one, the number of terms in
the series expansion is kept low.

The post-transformation, h(·), of Figure C.4 is a sigmoidal transformation and has the formula
given in the figure.  Due to the nonlinear post-transformation, the MLP nodal element is
nonlinear in its parameters.

GNOSIS v2.6 and later implements linear, trigonometric, and sigmoidal post-transformations,
and nonlinear clamping post transformations that clamp the output of the node at or within the
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values obtained during training.  This feature reduces the risk of incorrect extrapolations when
a polynomial node is interrogated outside its training region.

CHOOSING AN APPROPRIATE LOSS FUNCTION

For a given network structure the "optimal" coefficients can be defined as those which
minimize the sum of a loss function evaluated at every observation in a training database:

min 











∑
i=1

N
 d(     y     i ,      s    i)  (10)

where, N is the number of observations in the training database,      y     i is the ith output vector in
the training database,     s    i is the ith output vector of the network, and d(·) is the loss or distortion

function.

While most ANN paradigms use a squared-error distortion function, it is desirable to allow the
network to use different distortion functions depending on the network application.  In general,
most function estimation can fall into two broad categories:  (1) system model estimation and (2)
discriminant function estimation (Figure C.5).

Function Estimation

System Models Discriminant Functions

Smoothing

Filtering Prediction

Control

Detection Classification

Unsupervised 
Clustering

Conditional 
PDF 

Estimation

Figure C.5: Categories of Function Estimation

While a squared-error distortion function (or a modification thereof) is appropriate for system
modeling, other distortion functions are more appropriate for the estimation discriminant
functions.  It is important that the generalized networks can be optimized using a variety of
criteria;  therefore, the only restrictions placed on the distortion function for the generalized
network training are that it is convex and twice-differentiable.  

Two of the most important distortion functions are discussed below;  other loss functions are
discussed in [Ward, 1993].

Squared-Error Loss Function
The squared-error loss function can be expressed as

d(     y     i,     s    i) = |     y     i  –      s    i|
2 (11)
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In this case, the vector 2-norm |·|2 is defined as the sum of the squares of the differences
between the coordinates of      y     i and     s    i.  One problem with the squared-error loss function is tha t

data outliers tend to have a greater-than-desirable effect on the coefficient optimization.  A
number of robust loss functions have been suggested to reduce or nullify the effect of outlying
data.  One such function is Huber’s loss function

d(     y     i ,    s    i) =


 |y i – s     i|

2 if |y    i – s     i|
2 ≤ A

2A|     y     

    

i  –      s    i| – A2 if |     y     i  –      s    i|
2 > A

 (12)

where A is the distance at which outliers begin to have less effect.  When |     y     i  –      s    i| > A, d(·)

becomes a 1-norm.  This loss function has the advantages of a 1-norm; however, by using a 2-
norm near the origin, the function is everywhere continuous in the first and second derivatives,
which is not the case with a 1-norm loss function.

Logistic-Loss Function
Optimization of (10) using the squared-error distortion function of (11) corresponds to the
maximum likelihood rule in the case of a Gaussian probability model for the distribution of the
errors [Ljung, 1983].  However, for multi-class classification problems with categorical
variables, a multinomial probability model in regular exponential form is more suitable than
the Gaussian model [A.R. Barron, 1989].  In this case, the network functions should be used to
model the log-odds associated with the conditional probability of each class given the
observed inputs.  In this setting, the maximum likelihood rule corresponds to the choice of the
logistic loss function,

 d(     y     i,     s    i) = –      y     i ·     s    i  +  ln  











∑
j=1

C

e si,j  (13)

where C is the number of outputs (or classes); si,j  is the jth element of the     s    i vector; and      y     i is a

vector with the coordinate of the observed class equal to one, and all other coordinates equal to
zero (i.e., the observed conditional probabilities given     x    i).  In this context, the probability tha t
an observation is a member of class k, given that the input state is     x    i, can be readily computed as

follows:

p(k|    x    i) =  
esi,k

∑
j=1

C

esi,j

 (14)

Both the squared-error and Logistic loss functions are available in GNOSIS v2.6 and later.  A
variety of other potential loss functions are discussed in Ward [1993].

Additional Penalty Terms
Additional penalty terms may be included to improve the ability of the network to interpolate
between unseen data points.  The most important of these is the complexity penalty, discussed
below.  However, there are a number of functions of the network coefficients that may be added
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to any of the above loss functions to "smooth" the network output; these are often called
roughness penalties.

In addition to improving the ability to interpolate, a roughness penalty can also improve
network input-output stability, such that small variations in network input produce small
variations in network output over the entire range of operating conditions.  Any of the
following, for example, may be used as a roughness penalty:

• Sum of squares of coefficient magnitudes
• Sum of squares of network gradients with respect to the inputs
• Minus the log of the prior density function of the network parameters

INFORMATION THEORETIC NETWORK OPTIMIZATION

The most important modification to any of the distortion functions above is the addition of an
information-theoretic complexity penalty to prevent overfitting.  A.R. Barron [1993] has given
general conditions such that the minimum mean integrated squared error for an MLP neural
network with one hidden layer will be bounded by

O 





 

1
n     +   O 






 

nd
N  log N  (15)

where O(·) represents "order of (·)," n is the number of elements, d is the dimensionality (number
of coefficients per node), and N is the sample size (number of training exemplars).  The first
term in (15) bounds the approximation error, which decreases as network size increases.  The
second term in (15) bounds the estimation error, which represents the error that will be
encountered on unseen data due to overfitting of the training database; it is caused by the error
in estimating the coefficients.  Estimation error, unlike approximation error, increases with
network size.

Fully-connected, pre-structured networks, because they often have excessive internal degrees of
freedom, are prone to overfit training data, resulting in poor performance on unseen data.
Additionally, optimization of large pre-structured networks tends to be a slow and
computationally intensive process.  Without algorithms that learn the structure, the analyst
often must resort to guesswork or trial and error if network complexity is to be reduced.

Improvements in network performance on unseen data can be made if one incorporates into the
optimization algorithm modeling criteria that allow the network structure to grow to a just-
sufficient level of complexity.  Although this technique requires additional effort to search for
an optimal structure, the overall network generation time is, in general, reduced due to the
reduction in the number of coefficients.

Two decades of research have gone into this topic.  In Ukraine, Ivakhnenko [1968] introduced
the Group Method of Data Handling (GMDH).  With GMDH, the loss function is squared-error,
and overfitting is kept under control by means of cross-validation testing that employs
independent subsets (groups) of the database for fitting and selection.  GMDH is a satisfactory
approach when sufficient data are available.  In Japan, Akaike [1972] introduced an
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information theoretic criterion (AIC) that uses all of the data and incorporates a penalty term
for overfit control.  Akaike’s criterion is one of several that take the form

1
N ∑

i=1

N
  d(      y     i ,      s    i )    +   C 

K
N (16)

where K, in this context, is the number of non-zero coefficients in the model, N is the number of
data vectors in the database, and C is a constant.

Most forms of (16) depend on the structure of the candidate model, which can cause problems
when learning the model structure.  One form that does not is A.R. Barron's predicted squared
error (PSE) criterion [1984].   The derivation of PSE results in a loss function of the form given in
(16) with the constant

C   =   2σ2
p  (17)

where σp is an a priori estimate of the model error variance.  

Once an appropriate constrained loss function has been identified, the learning algorithm may
use a variety of techniques to search for a statistically justified level of complexity.  Among the
more successful structure-learning algorithms are GMDH [Ivakhnenko, 1968], Projection Pursuit
[Friedman, 1981], CART and MARS [Friedman, 1991], and Evolutionary Programming (EP)
approaches [Angeline, 1994].  Most of these algorithms, however, were originally designed to
work with a specific model structure.  However, these algorithms contain a number of proven
heuristics that may be applied to the structure-learning problem for the generalized networks
described here [Ward, 1993].   

The Optional ASPN-III Structure Learning Algorithm for GNOSIS
The ASPN-III structure-learning option of GNOSIS uses the predicted squared error (PSE) to
determine an optimal feedforward neural network structure.  For each layer of the synthesized
network, a succession of the various nodal functions, with different combinations of inputs, is
fitted and scored with the PSE modeling criterion.  Fitting consists of computing the optimum
values for the candidate element parameters using a batch least-squares technique.  The
candidate element is fitted in such a way that it attempts to solve the entire input-output
mapping problem by itself (except when the user wishes to use Projection Pursuit elements, as
discussed below).

In the two fitting algorithms used by ASPN-III, only small subsets of network parameters are
optimized at a given time; this reduces the dimensionality of the search space and improves
the performance of the fitting algorithm.  In most cases, it is sufficient to optimize only the
parameters of a single element while holding all other elements fixed.  This is the primary
fitting algorithm in ASPN-III.  Ivakhnenko [1968, 1971] was the first to propose this type of
network construction.  In Ivakhnenko's procedure, the parameters of each element are optimized
in such a way that it attempts to solve the entire input-output mapping problem.

Ivakhnenko’s fitting method is powerful, but has been improved.  In particular, the ASPN-III
projection-pursuit (secondary) fitting algorithm modifies the elements on a given layer so t h a t
they work in linear combination with other elements in that layer  to minimize the objective
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function.  This is accomplished using a backfitting technique inspired by the projection-pursuit
algorithm of Friedman et al .  [1974, 1981, 1988, 1988].  In this strategy, an additional set of
"dummy" parameters, β1, ..., βn, multiplies the outputs of the n elements on a given layer

(Figure C.6).

Element L,1

Element L,2

Element L,n

Layer L

β1

β2

βn

Σ
si

Figure C.6: Backfitting Strategy

The parameters of the node under consideration, along with the additional dummy parameters,
are optimized together so that the weighted sum of element outputs minimizes the fitting
squared error.  This has the effect of training each new element to work well in combination
with the existing elements of a given layer.  Additional nodes are added to a layer only when
their additional complexity is justified.

Entire layers may be optimized following a strategy originally used by A.R. Barron for
Adaptronics, Inc. in PNETTR in the 1970s, and most recently suggested by Breiman and
Friedman [1985].  In backfitting, each parameter subset is improved by iterating the search
algorithm a few steps while holding the rest of the parameters fixed.  This method is then
repeated for another subset of network parameters, etc.  For neural network based estimation,
the nodal elements become the logical choice for the parameter subsets to be optimized, and a
layer may be optimized by successively recursing through each nodal element, iterating the
fitting algorithm a few times for each element.  Breiman and Friedman showed that under
appropriate conditions this method will yield the same parameter values as are obtained v ia
a successful global optimization of the same structure.  Practical implementation of the
backfitting strategy has an advantage in that only a small set of linear equations needs to be
solved at any given time.

An example of the way in which backfitting is applied can be illustrated using a network as
defined in Figure C.6.  Once the structure of the layer has been determined, the parameters of
element L,1 and the dummy parameters,    β   , are adjusted using one iteration of the fitting
algorithm.  Next the parameters of element L,2 and    β    are adjusted using one iteration of the
fitting algorithm.  This process continues n times until the parameters of element L,n have been
adjusted.  At this point, the process begins again with element L,1.  The optimization routine
continues until the optimization no longer improves performance significantly.

Another way that backfitting can be used is during the search for network structure.  Elements
may be backfitted each time a new element is added, and the new element can be scored based
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on its performance in conjunction with the backfitted prior elements.  In general, backfitting
will increase training time, but it is a technique that can be used as often or as seldom as
desired.  Even when used to a small extent, backfitting can be a highly efficient way of
optimizing larger sets of parameters so that they work well together.

Once the structure of a given layer is determined, subsequent layers have the option of
combining the layer outputs linearly using the    β    coefficients chosen above, or they may go on
and recombine the outputs in more complex ways if the improved performance justifies the
additional complexity.  Layers are added one at a time in this fashion until overall network
growth stops when the modeling criterion (PSE) has reached a minimum.

ITERATIVE GAUSS-NEWTON OPTIMIZATION

At this point, the structure of the generalized networks has been completely specified in terms
of nodal elements (Figure C.2), their interconnections (Figure C.1), and the objective function
(10).  Given this information, a regularized iterative least-squares (ILS) method for optimizing
generalized nonlinear networks can be derived.  The algorithm is iterative in the sense tha t
multiple passes through the data are usually required to achieve convergence.  It is a least-
squares method in the sense that it minimizes a local quadratic approximation of the objective
function; it does not, however, require that a squared-error distortion function be used or tha t
the network equations be linear in the parameters.  It is regularized in the sense that the
condition of the pseudo-Hessian is monitored and adjusted to reduce numerical errors.

Let     ∇        f    (    x    
i
,    θ   

0
) be the gradient of the network output with respect to the element coefficients,    θ   ,

evaluated at    θ   
0
 and abbreviated     ∇    fθ

0
.  Element i,j of the matrix      ∇        f    θ

0
 is the gradient of the it h

network output with respect to the jth network coefficient.

Recall that each nodal element is the composition of a transformation h(z), with a series
expansion, z(    x    ,    θ   ), that is linear in its coefficients.  Therefore,     ∇        f    θ

0
 may be computed via the

chain rule as follows:

∂f
∂   θ       =   

dh
dz 





  

∂z
∂   θ      +  

∂z
∂    x     

∂x
∂   θ   
    

    =   
dh
dz 





  Φj(     k     j ,      x    )  +  

∂z
∂    x     

∂x
∂   θ   
    

 (18)

Note, that because the input to the node,     x    , may be the output of other nodes (either
feedforward or recurrent), (18) may also be used to compute ∂    x    /∂   θ   .  If the network is recurrent,
the gradients must be computed sequentially while stepping through the training database.  

Once     ∇        f    θ
0
 has been computed, it may be used to make a local linear approximation of the

network function about    θ   
0
:

f    (    x    i,    θ   )   =        f    (    x    i,    θ   
0
)  +  (    ∇    fθ

0

)T(   θ    –    θ   
0
)  +  H.O.T. (19)

Because the general form of the method is iterative, we wish to find a ∆   θ    such that the
iteration

θ      =      θ   
0
  +  µ ∆   θ   (20)
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produces a minimum of the loss linearized about    θ   
0
.   If µ, the parameter that controls the step

size, is taken to be unity and higher order terms are ignored, then (19) may be rewritten

f    (    x    i,    θ   )   ≅        f    (    x    i,    θ   
0
)  +  (    ∇    fθ

0
)T(∆   θ   ) (21)

Now, let     ∇    d(     y     
i
,     f    

i,0
) and     ∇    2d(     y     

i
,     f    

i,0
) be the C × 1 gradient and C × C Hessian, respectively, of

the distortion function with respect to the C × 1 vector of network outputs,     f    
i
, at observation, i ,

and evaluated at     f    
i
 =     f    

i,0
.  These are abbreviated     ∇    d   f   

0
 and     ∇    2d   f   

0
,
 
respectively.

Because restrictions are put on the objective function such that it is everywhere twice-
differentiable, the gradient and Hessian are known everywhere and can be used to make a local
quadratic approximation of the loss function in the vicinity of the current network output,     f    0:

d(     y     i,     f    i)   ≅    d(     y     i,     f    0)  +  (    ∇    d   f   0
)T(    f    i –     f    0)  +  

1
2(    f    i –     f    0) T(    ∇    2d   f   0

)(    f    i –     f    0) (22)

Using the local linear approximation of     f    i given in (21),  (22) becomes:

d(     y     i,     f    i) ≅  d(     y     i,     f    0)  +  (∇ d   f   0
)T(∇     f       θ   0

)T(∆   θ   )

+   
1
2(∆   θ   ) T (∇     f    θ

0
)(∇ 2d   s   0

)(∇     f    θ
0
)T (∆   θ   ) (23)

The total empirical loss, J, may then be calculated by summing the approximation of the
distortion function over all observations:

J(   θ   )  =   J(   θ      0   )  +      b    T(∆   θ   )  +  
1
2(∆   θ   ) T      A       (∆   θ   ) (24)

where

A        =    
1
N ∑

i=1

N
  (∇     f    θ)(∇ 2d   f   )(∇     f    θ) T (25)

and

b       =   
1
N ∑

i=1

N
  (∇     f    θ)(∇ d   f   ) (26)

It is now possible to calculate an approximate gradient of the empirical loss function with
respect to the coefficient vector    θ   :

∇ J   θ     =      b      +        A       (∆   θ   ) (27)

Because the loss function is required to be convex, the minimum is found at the point where the
gradient is zero.   Thus, (27) may be solved for ∆   θ    by the choice

(∆   θ   )  =  –       A      -1     b    (28)
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Thus

θ   new   =      θ   old  –  µ       A      -1     b    (29)

is the desired iteration.

To use the ILS optimization technique, the analyst must provide the following:

• An analytic form of the first and second partials of the objective function with respect

to the network outputs,     ∇    d   s    and     ∇    2d   s   .

• An analytic form for the first derivative of the post-transformation h(z).
• an analytic form for the gradient of an element output with respect to its input vector,

∇    f   x   .

Regularization
Experience has shown that, for non-quadratic objective functions, Newton methods may be
unreliable, especially if the coefficients are initialized far from the minimum.  This is because
techniques for solving the system of equations in (28) break down when the pseudo-Hessian
matrix,       A      , becomes singular or nearly singular.  Regularization techniques are methods that can
be used to ensure that       A       is positive-definite.  Many techniques can accomplish this and sti l l
provide an iteration that is only slightly different than the optimal Newton direction.  One
such technique is the Levenberg-Marquardt (LM) method [Marquardt, 1963; Press, 1986].  LM can
be incorporated into the ILS algorithm in a straightforward fashion.

The matrix       A       , as defined by (29), is square and positive-semi-definite.  One way of ensuring
that       A       is positive-definite is simply to add some small positive values to the diagonals.  Thus,
at each iteration,       A        may be modified using one of the following methods:

A      ’   =          A        +  λ     I        (30)

or

A      ’   =          A        +  λ diag(      A      )  (31)

where λ is a positive constant,     I      is the identity matrix, and diag(      A      ) denotes the matrix       A       with
all but its diagonal elements set to zero.  When λ is large, the second term in the above
equations dominates, and the iteration steps along the gradient (27);  in this way, the
algorithm becomes equivalent to the popular LMS backpropagation algorithm.  When λ is
small or zero, the first term in the above equations dominates, and the iteration becomes a
Gauss-Newton iteration.  There are a number of heuristic schemes for varying λ during the
course of the search so that       A      ’ remains positive-definite and the algorithm converges rapidly
[Elder, 1991].

Because ILS is a variation of Gauss-Newton techniques, recursive forms can be derived tha t
allow fast, efficient updating in a manner similar to recursive least squares and Kalman filters
[Ward, 1993].
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CONCLUSIONS

GNOSIS is built using both a generalized network structure and a generalized nonlinear
learning algorithm capable of implementing many types of network transformations for a
variety of purposes.  By making specific choices concerning the nodal element structure, the
distortion function, and the optimization algorithm parameters, one may use the algorithm to
implement a variety of existing neural network paradigms, including polynomial neural
networks (PNNs), multi-layer perceptrons (MLPs), and radial basis functions (RBFs).
However, in addition to providing insight into existing artificial neural network paradigms by
placing them in a broader context of generalized function estimation, the power of the technique
lies in its ability to generalize and combine aspects of a variety of algorithms in new ways tha t
may be uniquely appropriate for specific applications.



D
SYNTAX AND

HELPSCREENS

Following is the syntax screen displayed for the -help function of DB:

***************************************************
# DB Version 2.4
# Copyright 1989-1998, Barron Associates, Inc.
# All rights reserved
***************************************************
# Cmdline: db -help
# The following options are available in DB's command line:
#
# -calc file name=expr [name=expr ...] [-a] -out file
# -clip file var min max [var min max ...] -out file
# -corr file [var ...]
# -delay file var d1...dN [var d1...dN] [-a] -out file
# -help [-option]
# -histo file [var bins/width ...] [bins/width]
# -merge file [file ...] [-obs] -out file
# -random [file] [-n num] [-name var] [-unif lo hi] [-gauss mean std] [-f]

[-seed x] -out file
# -sequence [file] [-n num] var start step [var start step ...] [-block]

-out file
# -select file [-del] [var ...] [b.o[-b.o] ...] [-range var lo hi] [-thin n] 

-out file
# -sort file var [var var] [-r] [-block] -out file
# -split file [-obs p] [-block p] [-seed x] -out filebase
# -stats file [var ...]
# -zero file var min max [var min max ...] [-r] -out file
#
# Multiple DB commands may be executed in sequence by recording
# them in the file db.cmd, using '#' as a comment character.
# Invoking DB without options executes the commands in db.cmd.
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Following are the syntax screens displayed for each function of DB:

# -calc file name=expr [name=expr ...] [-a] -out file
#
# This option calculates new variables from existing ones. Use the -a
# option to append the new variables to the original database; otherwise
# the variables are written to the output alone.  Available operators are:
#
# Monadic Operators:
#   sqrt  abs  exp  sin  cos  tan  asin  acos  atan log log10 round
#
# Dyadic Operators:
#     +  -  *  /  ^ %
#
# NOTE: Numeric format e and unary minus are not implemented.
#       Trigonometric operators require radian arguments.
#       White space is not allowed within the name=expression string.
#
# Example: db -calc cannon.dat xdot=velocity*cos(gamma) -a -out cannon.out
# Append new variable xdot into cannon.out, computed from velocity and gamma
# in cannon.dat.

# -clip file var min max [var min max ...] -out file
#
# This option clips variable values. Values less than min are set to the min
# value, and variables greater than max are set to the max value specified.
# Min must be <= max; use '$' for either max or min to specify no min or max
# clipping respectively.
#
# Example: db -clip cannon.dat gamma 20.0 50.0 range 30000 $ -out cannon.out
# Limit gamma to the range 20..50; limit range to values at or above 30000.
# Copy all other variables without modification from cannon.dat to cannon.out.

# -corr file [var ...]
#
# This option determines the linear correlation between variables by calcu-
# lating a matrix of correlation coefficients.  If no vars are specified,
# the correlation for every permutation of two variables in the specified
# file will be calculated.  The linear correlation coefficient formula is:
#
#     r = summation(xy) / sqrt[summation(x^2) * summation(y^2)]
#     where x = X - mean of X, and y = Y - mean of Y
#
# Example: db -corr cannon.dat velocity gamma
# Display correlation between velocity and gamma of cannon.dat.
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# -delay file var d1...dN [var d1...dN] [-a] -out file
#
# This option allows the user to produce delay/advance observations for one
# or more variables in a database.  Multiple non-zero positive or negative
# delays for each variable may be requested.  The delay outputs are labeled
# in order 'var_Dx' for each positive delay, 'var_Ax' for each negative delay
# (advance), where x = abs(delay).  Use the -a option to append the delay
# outputs to the original database; otherwise the variables are written to
# the output alone.
#
# NOTE: the first max_delay observations and last min_delay observations
# are deleted from each block of the output database, where max_delay is
# largest delay > 0 and min_delay is smallest delay (largest advance) < 0.
# If a block has insufficient observations, it is deleted entirely.
#
# Example: db -delay cannon.dat velocity -1 1 4 gamma -2 -a -out cannon.out
# Append delayed variables D1 and D4 for velocity, advance variables A1 for
# velocity and A2 for gamma into cannon.out.  First 4 and last 2 observations
# of every block in cannon.dat are not copied to cannon.out.  For all other
# observations, velocity_D1 is the value of velocity from the previous
# observation, velocity_A1 is velocity from the following observation, etc.

# -help [-option]
#
# This option displays a list of the available db options and the proper
# usage of each option.  If the suboption [-option] is specified, the
# usage and detailed description for the specified option is displayed.
#
# Example: db -help -calc
# Display help screen for calc function.

# -histo file [var bins/width ...] [bins/width]
#
# This option displays a histogram table of one or more variables.  The data
# for each variable is sorted and then separated into bins of width > 0
# specified for that variable.  If the specifier has a decimal point, it is
# used as bin width; otherwise the specifier is the number of bins > 0 and
# width is computed = (max-min)/bins.  If no variables are listed, histograms
# for all database variables are displayed using a single specified bin width.
#
# Example: db -histo cannon.dat velocity 5 range 10000.0
# Display number and percentage of observations in each of 5 bins for
# velocity, and in bins of width 10000 for range.
#
# Example: db -histo cannon.dat 10
# Display a 10-bin histogram table for each variable in cannon.dat.
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# -merge file [file ...] [-obs] -out file
#
# This option merges two or more databases into a single database.  By default
# variables are merged column-wise. The number of blocks and observations must
# be the same for each input database and variable names should be unique.
# Use -obs to merge observations row-wise in separate blocks. The number of
# variables must be the same for each input database and variable names come
# from the first database.
#
# Example: db -merge r.dat s.dat t.dat -out merge.dat
# Merge the variables in r.dat, s.dat, and t.dat column-wise into merge.dat.
#
# Example: db -merge r.dat s.dat -obs -out merge.dat
# Merge the observation blocks in r.dat and s.dat row-wise into merge.dat.

# -random [file] [-n num] [-name var] [-unif lo hi] [-gauss mean std] [-f]
[-seed x] -out file

#
# This option creates a column of pseudo-random numbers in a new file, or
# following other columns in an existing file.  Choose either uniform or
# gaussian distribution.  The suboptions available are:
#
#   -n num          number of observations > for a new file
#                   Not used if input file is given
#   -name var       variable name for the random numbers; default 'Random'
#   -unif low high  random number in uniform distribution between low and high
#   -gauss mean std random number in gaussian distribution with the given mean
#                   and standard deviation > 0
#   -f              random numbers are floats; default integers
#   -seed x         seed for the random number generator. 'x' is integer > 0
#                   or the string 'clock'
#
# Example: db -random -n 25 -gauss -10 10 -out cannon.out
# Output 25 random integers into cannon.out with mean = -10 and standard
# deviation = 10.  Random sequence is repeatable, due to fixed seed.
#
# Example: db -random cannon.dat -unif 0 100 -f -seed clock -out cannon.out
# Append variable Random into cannon.out with floating point values uniformly
# distributed between 0 and 100.  Repeated random sequences are unique, due
# to seeding by clock.

# -sequence [file] [-n num] var start step [var start step ...] [-block]
-out file

#
# This option creates one or more columns of sequential numbers in a new file,
# or following other columns in an existing file.  Use the -n option to give
# the number of observations for a new file.  For each column, labeled 'var',
# the sequence begins at number 'start' and increments by number 'step'.  For
# existing files, 'start' may be a database variable; the sequence begins at
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# the first observation value of the named variable.  The -block option for
# existing files causes the sequence to restart at every database block.
#
# Example: db -sequence -n 25 Obs 1 1 -out cannon.out
# Output variable Obs with 25 values {1, 2, .., 25} into cannon.out
#
# Example: db -sequence cannon.dat vel0 vel 0 test 0 -0.1 -block -out 

cannon.out
# Append variables vel0 and test into cannon.out.  For each block, vel0 is a
# constant = vel value in first observation of the block.  test is a linear
# sequence = {0.0, -0.1, -0.2, ...} which restarts at 0.0 for each block.

# -select file [-del] [var ...] [b.o[-b.o] ...] [-range var lo hi] [-thin n] 
-out file

#
# This option selects variables and/or observations from a database for
# deletion (-del option) or extraction (default).  If a variable is specified,
# the entire variable column is selected.  A number by itself, 'b.o', selects
# observation o of block b, counting from 1.  Observation ranges are specified
# with a hyphen, 'b.o-b.o', where b = block and o = observation number of the
# beginning and end of the range.  Use '$' for any b or o to specify the first
# or last block or observation in a range. For a single-block database, 'b.'
# may be omitted and is presumed to be 1.
#
# Other selection suboptions are:
#   -range var lo hi select based on value of one variable
#   -thin n          select 1st obs and every nth obs thereafter, n > 1
#
# Example: db -select cannon.dat -del gamma 1.10 5.5-$.$ -out cannon.out
# Delete gamma column, 10th observation in first block, and from observation 5
# of block 5 to the end of the database.  Remaining variables and observations
# are copied from cannon.dat to cannon.out.

# -sort file var [var var] [-r] [-block] -out file
#
# This option sorts a database by one to three variables. To start, the
# first variable is sorted.  If there are equal values, the second variable
# is sorted, etc.  Use the -r option to sort in reverse.  Use the -block
# option to sort the data within each block, retaining the block structure.
# Otherwise, a multi-block database is sorted into a single-block output.
#
# Example: db -sort cannon.dat range -r -out cannon.out
# Sort cannon.dat by descending range values into cannon.out.

# -split file [-obs p] [-block p] [-seed x] -out filebase
#
# This option splits a database into two files, either by blocks or by
# observations.  The splitting ratio 'p' gives the integer number of blocks
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# or observations, or the fraction between 0.0 and 1.0 of the database to
# split into 'file.tra'.  The unselected part of the database is split into
# 'file.eva'.  The suboptions are:
#
#    -obs p     split by observations, ignoring block structure.
#               'p' is # obs >0 & <tot_obs or fraction >0.0 & <1.0
#    -block p   split by whole blocks; choose either -obs or -block.
#               'p' is # blocks >0 & <num_blocks or fraction >0.0 & <1.0
#    -seed x    seed for the random number generator. 'x' is integer > 0
#               or the string 'clock'
#    -out file  specify the basename of the two partial databases:
#               'file.tra' and 'file.eva'
#
# Example: db -split cannon.dat -obs 0.8 -out cannon
# Randomly split 80% of the observations in cannon.dat into cannon.tra. Split
# remaining 20% into cannon.eva.  Split is repeatable due to fixed seed.
#
# Example: db -split cannon.dat -block 10 -seed clock -out cannon
# Randomly split 10 of the blocks in cannon.dat into cannon.tra. Split
# remaining blocks into cannon.eva.  Repeated splits are unique, due to
# seeding by clock.

# -stats file [var ...]
#
# This option displays statistical quantities for one or more variables.
# The statistics include: min, max, mean, and median for both signed and
# absolute values, standard deviation and variance.  If no variables
# are specified, statistics for all are displayed.
#
# Example: db -stats cannon.dat gamma
# Display statistics for gamma from cannon.dat.

# -zero file var min max [var min max ...] [-r] -out file
#
# This option sets any values outside the specified min and max to zero.
# Min must be <= max; use '$' for either max or min to specify no min or max
# zeroing respectively.  Use option -r to reverse the operation and zero
# inside the specified range.
#
# Example: db -zero cannon.dat gamma 20.0 50.0 range 30000 $ -out cannon.out
# Set all gamma values outside the range 20..50 and ranges below 30000 to 0.


